scholarly journals Experimental Study on the Shear-Flow Coupled Behavior of Tension Fractures Under Constant Normal Stiffness Boundary Conditions

Processes ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 57 ◽  
Author(s):  
Changsheng Wang ◽  
Yujing Jiang ◽  
Hengjie Luan ◽  
Jiankang Liu ◽  
Satoshi Sugimoto

This study experimentally investigated the effects of fracture surface roughness, normal stiffness, and initial normal stress on the shear-flow behavior of rough-walled rock fractures. A series of shear-flow tests were performed on two rough fractures, under various constant normal stiffness (CNS) boundary conditions. The results showed that the CNS boundary conditions have a significant influence on the mechanical and hydraulic behaviors of fractures, during shearing. The peak shear stress shows an increasing trend with the increases in the initial normal stress and fracture roughness. The residual shear stress increases with increasing the surface roughness, normal stiffness, and initial normal stress. The dilation of fracture is restrained more significantly under high normal stiffness and initial normal stress conditions. The hydraulic tests show that the evolutions of transmissivity and hydraulic aperture exhibit a three-stage behavior, during the shear process—a slight decrease stage due to the shear contraction, a fast growth stage due to shear dilation, and a slow growth stage due to the reduction rate of the mechanical aperture increment. The transmissivity and hydraulic aperture decreased, gradually, as the normal stiffness and initial normal stress increase.

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Min Wang ◽  
Qifeng Guo ◽  
Pengfei Shan ◽  
Meifeng Cai ◽  
Fenhua Ren ◽  
...  

The effects of roughness and normal stress on hydraulic properties of fractures are significant during the coupled shear flow test. Knowing the laws of fluid flow and solute transport in fractures is essential to ensure the nature and safety of geological projects. Although many experiments and numerical simulations of coupled shear flow test have been conducted, there is still a lack of research on using the full Navier-Stokes (N-S) equation to solve the real flow characteristics of fluid in three-dimensional rough fractures. The main purpose of this paper is to study the influence of roughness and normal stress on the fluid flow and solute transport through fractures under the constant normal stiffness boundary condition. Based on the corrected successive random addition (SRA) algorithm, fracture surfaces with different roughness expressed by the Hurst coefficient ( H ) were generated. By applying a shear displacement of 5 mm, the sheared fracture models with normal stresses of 1 MPa, 3 MPa, and 5 MPa were obtained, respectively. The hydraulic characteristics of three-dimensional fractures were analyzed by solving the full N-S equation. The particle tracking method was employed to obtain the breakthrough curves based on the calculated flow field. The numerical method was verified with experimental results. It has been found that, for the same normal stress, the smaller the fracture H value is (i.e., more tough the fracture is), the larger the mechanical aperture is. The ratio of hydraulic aperture to mechanical aperture ( e h / e m ) decreases with the increasing of normal stress. The smaller the H value, the effect of the normal stress on the ratio e h / e m is more significant. The variation of transmissivity of fractures with the flow rate exhibits similar manner with that of e h / e m . With the normal stress and H value increasing, the mean velocity of particles becomes higher and more particles move to the outlet boundary. The dispersive transport behavior becomes obvious when normal stress is larger.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 997
Author(s):  
Xiaoyuan Li ◽  
Qikai Li ◽  
Zuoyan Ye ◽  
Yunfei Zhang ◽  
Minheng Ye ◽  
...  

Although magnetorheological finishing (MRF) is being widely utilized to achieve ultra-smooth optical surfaces, the mechanisms for obtaining such extremely low roughness after the MRF process are not fully understood, especially the impact of finishing stresses. Herein we carefully investigated the relationship between the stresses and surface roughness. Normal stress shows stronger impacts on the surface roughness of fused silica (FS) when compared with the shear stress. In addition, normal stress in the polishing zone was found to be sensitive to the immersion depth of the magnetorheological (MR) fluid. Based on the above, a fine tuning of surface roughness (RMS: 0.22 nm) was obtained. This work fills gaps in understanding about the stresses that influence surface roughness during MRF.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Xiangyu Wang ◽  
Ruofan Wang ◽  
Zizheng Zhang

The direct shear test is implemented in this paper for infilled joints under constant normal stiffness (CNS) condition with the finite difference software FLAC3D. The CNS condition was performed based on a servoprogram developed by FISH language. The effects of initial normal stress, undulating angle, and infilled ratio on the shear failure mode of infilled joints under CNS are revealed based on numerical simulation. It is found that the shear strength of infilled joints will grow along with the increase of the undulating angle and the decrease of the infilled ratio. The numerical analysis method is also able to quantify the effect of multiple factors (initial normal stress and infilled ratio) on shear properties of infilled joints. The model shows a good agreement with the experimental results available in the literatures. Therefore, this study proposed and verified a numerical analysis method capable of studying the effects of normal stress, undulating angles, and infilled ratio on the shear behavior of infilled rock joints.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Hsiang-Chin Jao ◽  
Kuo-Ming Chang ◽  
Li-Ming Chu ◽  
Wang-Long Li

A lubrication theory that includes the coupled effects of surface roughness and anisotropic slips is proposed. The anisotropic-slip phenomena originate from the microscale roughness at the atomic scale (microtexture) and surface properties of the lubricating surfaces. The lubricant flow between rough surfaces (texture) is defined as the flow in nominal film thickness multiplied by the flow factors. A modified average Reynolds equation (modified ARE) as well as the related factors (pressure and shear flow factors, and shear stress factors) is then derived. The present model can be applied to squeeze film problems for anisotropic-slip conditions and to sliding lubrication problems with restrictions to symmetric anisotropic-slip conditions (the two lubricating surfaces have the same principal slip lengths, i.e., b1x=b2x and b1y=b2y). The performance of journal bearings is discussed by solving the modified ARE numerically. Different slenderness ratios 5, 1, and 0.2 are considered to discuss the coupled effects of anisotropic slip and surface roughness. The results show that the existence of boundary slip can dilute the effects of surface roughness. The boundary slip tends to “smoothen” the bearings, i.e., the derived flow factors with slip effects deviate lesser from the values at smooth cases (pressure flow factors φxxp,φyyp=1; shear flow factors φxxs=0; and shear stress factors φf,φfp=1 and φfs=0) than no-slip one. The load ratio increases as the dimensionless slip length (B) decreases exception case is also discussed or the slenderness ratio (b/d) increases. By controlling the surface texture and properties, a bearing with desired performance can be designed.


1976 ◽  
Vol 16 (74) ◽  
pp. 279-280 ◽  
Author(s):  
W.F. Budd

Abstract We are interested in studying the processes of sliding of ice over a variety of rock surfaces with the object of determining an empirical relation for the basal shear stress appropriate for glaciers. The variables to be considered include: normal stress Ν, shear stress Ƭ, surface roughness r, sliding velocity V, temperature θ, water at the interface, and the presence of debris. The roughness is considered to be a function of two variables; the scale or wavelength λ, and the shape or slope of the roughness a / λ, where ais the amplitude of the variations of that scale.


Sign in / Sign up

Export Citation Format

Share Document