scholarly journals Experimental Study on Electric Potential Response Characteristics of Gas-Bearing Coal During Deformation and Fracturing Process

Processes ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 72 ◽  
Author(s):  
Zhonghui Li ◽  
Yue Niu ◽  
Enyuan Wang ◽  
Lanbo Liu ◽  
Honghao Wang ◽  
...  

Coal mass is deformed and fractured under stress to generate electrical potential (EP) signals. The mechanical properties of coal change with the adsorption of gas. To investigate the EP response characteristics of gas-bearing coal during deformation and fracture, a test system to monitor multi-parameters of gas-bearing coal under load was designed. The results showed that abundant EP signals were generated during the loading process and the EP response corresponded well with the stress change and crack expansion, and validated this with the results from acoustic emission (AE) and high-speed photography. The higher stress level and the greater the sudden stress change led to the greater EP abnormal response. With the increase of gas pressure, the confining action and erosion effect are promoted, causing the damage evolution impacted and failure characteristics changes. As a result, the EP response is similar while the characteristics were promoted. The EP response was generated due to the charge separation caused by the friction effect etc. during the damage and deformation of the coal. Furthermore, the main factors of the EP response were different under diverse loading stages. The presence of gas promoted the EP effect. When the failure of the coal occurred, EP value rapidly rose to a maximum, which could be considered as an anomalous characteristic for monitoring the stability and revealing failure of gas-bearing coal. The research results are beneficial for further investigating the damage-evolution process of gas-bearing coal.

2011 ◽  
Vol 189-193 ◽  
pp. 476-483
Author(s):  
Zhi Sun ◽  
Yan Wei Sui ◽  
Jun Li ◽  
Yan Ni Zhou

Due to developing the strengthening effect of liquid jet peening on the surface modification for metallic materials, in this study, an emulsion jet peening is produced by injecting a high-speed emulsion jet into an emulsion filled tank. The test system and fixed emulsion of cavitation jet was developed. High speed photography technique was used to observe and analysis the structure of emulsion cavitation jet at various upstream pressures . The results indicate that the structure of emulsion cavitation jet in terms of jet impact pressure, intensive degree and uniformity is better than that water jet. The jet structure depends on the jet pressure. The cavitation jet length increases rapidly at the initial stage and then it stabilizes after few milliseconds. The stabilized length of jet increases and the diverges angle decreases with increasing pressures. Specimens made of plan carbon steel (Q235A, China standard) were exposed to emulsion jet peening at the stand-off distances of 20 mm with a constant upstream pressure, 20 MPa for 60 s. The fatigue test shows that the crack initiation life by treatment of emulsion jet peening increases about 12.5% and 20.2% compared to water jet and unpeened specimen respectively.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6147
Author(s):  
Zhiqiang Zhang ◽  
Dacheng Cong ◽  
Zhidong Yang ◽  
Yunfei Cai ◽  
Junwei Han

A train end relationship test system was installed with a Stewart parallel robot on the reaction bases perpendicular to the ground, to test the fatigue and durability of train end relationship components, such as the transfixion way of a high-speed railway train. The flexibility of the reaction bases affected the test accuracy of the train end relationship components within a test frequency band range. In this paper, a coupling characteristic model was established between the flexible bases and the parallel robot. Then, the analytical relationship was analyzed between the natural frequency of the bases and the natural frequency of the parallel robot. Moreover, a design criterion was proposed for the natural frequency of the reaction bases. It was considered that when the natural frequency of the bases was not less than five times the natural frequency of the parallel robot, the influence of the flexibility of the bases on the test accuracy can be ignored. The validity of the design criterion was verified by the simulation results.


2014 ◽  
Vol 1008-1009 ◽  
pp. 919-926
Author(s):  
Xue Qing Chen ◽  
Lei Tong

Three liquid-gas separator units were designed and manufactured from transparent acrylic resin based on the concept of a new kind of validated high performance condenser. The separator units had different spaces between baffle and outlet arm or different header diameters. A visualization cold state test system was set up to explore the basic principle of liquid-gas separation and liquid discharge process, using air and water as the working fluids. Four kinds of liquid flow patterns were observed by the liquid staining and high-speed photography at inlet air superficial velocities from 1m/s to 15m/s and water superficial velocities from 0.0015m/s to 0.06m/s. The effects of operation conditions and structure parameters on the separation efficiency of the liquid-gas separator units were investigated. The results showed that under the experimental conditions, the separation efficiency was more than 70%, the separation efficiency could be improved by increasing the space between baffle and outlet arm as well as the header diameter.


2020 ◽  
Vol 13 (3) ◽  
pp. 115-129
Author(s):  
Shin’ichi Aratani

High speed photography using the Cranz-Schardin camera was performed to study the crack divergence and divergence angle in thermally tempered glass. A tempered 3.5 mm thick glass plate was used as a specimen. It was shown that two types of bifurcation and branching existed as the crack divergence. The divergence angle was smaller than the value calculated from the principle of optimal design and showed an acute angle.


2016 ◽  
Vol 11 (1) ◽  
pp. 30-37 ◽  
Author(s):  
A.A. Rakhimov ◽  
A.T. Akhmetov

The paper presents results of hydrodynamic and rheological studies of the inverse water hydrocarbon emulsions. The success of the application of invert emulsions in the petroleum industry due, along with the high viscosity of the emulsion, greatly exceeding the viscosity of the carrier phase, the dynamic blocking effect, which consists in the fact that the rate of flow of emulsions in capillary structures and cracks falls with time to 3-4 orders, despite the permanent pressure drop. The reported study shows an increase in viscosity with increasing concentration or dispersion of emulsion. The increase in dispersion of w/o emulsion leads to an acceleration of the onset of dynamic blocking. The use of microfluidic devices, is made by soft photolithography, along with high-speed photography (10,000 frames/s), allowed us to see in the blocking condition the deformation of the microdroplets of water in inverse emulsion prepared from simple chemical compounds.


Machines ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Jing Wang ◽  
Zhihua Wan ◽  
Zhurong Dong ◽  
Zhengguo Li

The harmonic reducer, with its advantages of high precision, low noise, light weight, and high speed ratio, has been widely used in aerospace solar wing deployment mechanisms, antenna pointing mechanisms, robot joints, and other precision transmission fields. Accurately predicting the performance of the harmonic reducer under various application conditions is of great significance to the high reliability and long life of the harmonic reducer. In this paper, a set of automatic harmonic reducer performance test systems is designed. By using the CANOpen bus interface to control the servo motor as the drive motor, through accurately controlling the motor speed and rotation angle, collecting the angle, torque, and current in real time, the life cycle test of space harmonic reducer was carried out in high vacuum and low temperature environment on the ground. Then, the collected data were automatically analyzed and calculated. The test data of the transmission accuracy, backlash, and transmission efficiency of the space harmonic reducer were obtained. It is proven by experiments that the performance data of the harmonic reducer in space work can be more accurately obtained by using the test system mentioned in this paper, which is convenient for further research on related lubricating materials.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 559
Author(s):  
Lakshminath Kundanati ◽  
Prashant Das ◽  
Nicola M. Pugno

Aquatic predatory insects, like the nymphs of a dragonfly, use rapid movements to catch their prey and it presents challenges in terms of movements due to drag forces. Dragonfly nymphs are known to be voracious predators with structures and movements that are yet to be fully understood. Thus, we examine two main mouthparts of the dragonfly nymph (Libellulidae: Insecta: Odonata) that are used in prey capturing and cutting the prey. To observe and analyze the preying mechanism under water, we used high-speed photography and, electron microscopy. The morphological details suggest that the prey-capturing labium is a complex grasping mechanism with additional sensory organs that serve some functionality. The time taken for the protraction and retraction of labium during prey capture was estimated to be 187 ± 54 ms, suggesting that these nymphs have a rapid prey mechanism. The Young’s modulus and hardness of the mandibles were estimated to be 9.1 ± 1.9 GPa and 0.85 ± 0.13 GPa, respectively. Such mechanical properties of the mandibles make them hard tools that can cut into the exoskeleton of the prey and also resistant to wear. Thus, studying such mechanisms with their sensory capabilities provides a unique opportunity to design and develop bioinspired underwater deployable mechanisms.


Sign in / Sign up

Export Citation Format

Share Document