scholarly journals Effect of Hydraulic Retention Time on Carbon Sequestration during the Two-Stage Anammox Process

Processes ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 717 ◽  
Author(s):  
Xueyan Ma ◽  
Xiaoning Liu ◽  
Bangdong Xiang ◽  
Wenjie Zhang

In a biological treatment process, hydraulic retention time (HRT) has a certain effect on the operation of the reactor. This study investigated the effect of HRT on carbon sequestration in a two-stage anaerobic ammonium oxidation (anammox) process using a partial nitrification reactor and anammox reactor to determine the optimal carbon sequestration operating conditions. Molecular biotechnology was used to analyze the sludge in the reactor in order to explore the denitrification performance and to determine the carbon sequestration pathway of the microorganisms. The results show that the partial nitrification stage had the highest carbon sequestration rate (0.319 mg/mg·N) when the nitrogen loading rate (NLR) was 0.44 kg·N/m3/d. The NLR of the anammox stage was 0.13 kg·N/m3/d. When the HRT was 33.4 h, the carbon sequestration of the anammox reaction was at its highest, reaching 0.183 mg/mg·N. The results of microbial analysis show that the carbon-fixing gene cbbLR1 was present in the sludge samples during the anammox and partial nitrification stages, and that there was a Calvin cycle carbon sequestration pathway during the growth process. However, the existence of a gene for reducing and immobilizing CO2 by the acetyl-CoA pathway was not detected; further research is thus needed.

2016 ◽  
Vol 18 (4) ◽  
pp. 867-874 ◽  

<p>In this study, a two-stage anaerobic ammonium oxidation (anammox) system—including a partial nitritation system with a biological selector (PNBS) and a granular activated carbon-based granule anammox process (GAP) —was used for the treatment of real high-strength rare-earth ammonia wastewater (HRAW). A nitrogen removal rate of 89% on average was achieved at the end of the study with the influent total nitrogen concentration of 2200 mg l<sup>-1</sup>. The nitrogen-loading rate (NLR) of 17 kg N/(m<sup>3</sup>×d) was achieved in the PNBS, and a reduced NLR of 6 kg N/(m<sup>3</sup>×d) was maintained in the GAP. To our knowledge, this is the highest NLR applied to a two-stage anammox system. A genetic analysis of the sludge samples revealed that a <em>Nitrosomonas</em><em> sp.</em> was enriched in the PNBS reactor, while, <em>Kuenenia stuttgartiensis</em><sub>,</sub><em> Uncultured bacterium clone KIST-JJY001</em>, and <em>Uncultured anoxic sludge bacterium KU2</em> were enriched in the GAP reactor.</p>


2021 ◽  
Author(s):  
Aryama Raychaudhuri ◽  
Manaswini Behera

Abstract An innovative design approach was employed in the present study to enhance the electricity generation and wastewater treatment in a microbial fuel cell (MFC). A dual-chambered MFC with a ceramic separator was coupled with an acidogenic chamber. Acidogenic bioconversion of rice mill wastewater into volatile fatty acid (VFA) represents an interesting approach for wastewater valorization. The VFA containing effluent could be used as an effective substrate for bioelectricity generation in MFCs. A short hydraulic retention time (HRT) can be used for the two-stage anaerobic process (acidogenesis and electrogenesis), thus preventing the proliferation of methanogens. The effect of pH (5.5–7.5) and HRT (0.5 d–0.75 d) were investigated to understand the influence of operational parameters on the performance of the integrated system. The maximum VFA concentration of 1065.15 ± 5.08 mg COD/L was achieved at pH 7.5 and HRT 0.5 d. Under these operating conditions, the general activity of acid-forming microorganisms and exoelectrogens improved remarkably, and the power density obtained from the system was 4.72 ± 0.10 W/m3. The current research indicates excellent potential for simultaneous treatment and electricity production from rice mill wastewater. The use of low-cost, locally manufactured, and customized membranes and the two-stage treatment can pave the way for the practical application of this technology.


1996 ◽  
Vol 31 (1) ◽  
pp. 1-20 ◽  
Author(s):  
H.W. Liu ◽  
S.N. Lo ◽  
H.C. Lavallée

Abstract Basic equations based upon the Monod kinetic model are presented for a two-stage, sequential anaerobic-aerobic treatment system. The effects of operating conditions, such as hydraulic retention time, mean cell age, concentration of microorganisms and initial substrate concentration, on the behaviour of the two-stage system for the treatment of a CTMP effluent were studied theoretically. This was done in terms of removal of BOD5 and RFA, and sensitivity to changes in operating conditions. The study revealed that unstable operation of the anaerobic process could be due to the treatment being carried out in a time range in which the operation was very sensitive to the variation in either hydraulic retention time or mean cell age.


2011 ◽  
Vol 64 (4) ◽  
pp. 967-973
Author(s):  
S. Koyunluoglu-Aynur ◽  
R. Riffat ◽  
S. Murthy

The objective of the present work was to evaluate the effect of hydraulic retention time (HRT) on hydrolysis and acidogenesis for the pretreatment processes: acid phase digestion (APD) and autothermal thermophilic aerobic digestion (ATAD) using blended municipal sludge. The effect of the different pretreatment steps on mesophilic anaerobic digestion (MAD) was evaluated in terms of methane yield, keeping the operating conditions of the MAD the same for all systems. Best operating conditions for both APD and ATAD were observed for 2.5 d HRT with high total volatile fatty acids (tVFA), and the highest methane yield observed for MAD. No significant difference was observed between the two processes in terms of overall volatile solids (VS) reduction with same total HRT. The autothermal process produced heat of 14,300 J/g VS removed from hydrolytic and acetogenic reactions without compromising overall methane yields when the HRT was 2.5 d or lower and the total O2 used was 0.10 m3 O2/g VS added or lower. However, the process needs the input of oxygen and engineering analysis should balance these differences when considering the relative merits of the two pretreatment processes. This is the first study of its kind directly comparing these two viable pretreatment processes with the same sludge.


2000 ◽  
Vol 41 (12) ◽  
pp. 101-106 ◽  
Author(s):  
D. Pak ◽  
W. Chang

A two-biofilter system operated under alternate conditions of anaerobic/aerobic was tested to simultaneously remove nitrogen and phosphorus from sewage. The factors affecting simultaneous removal of nitrogen and phosphorus by the two-biofilter system were investigated. Those factors appeared to be influent COD/T-N and COD/T-P ratio, nitrogen loading rate and hydraulic retention time. Nitrite and nitrate produced in the biofilter in aerobic condition affected phosphorus removal by the two-biofilter system. The amount of biomass wasted during the backwash procedure also affected total nitrogen and phosphorus removal by the system.


2021 ◽  
Vol 26 (1) ◽  
pp. 25
Author(s):  
Zulkarnaini Zulkarnaini ◽  
Puti Sri Komala ◽  
Arief Almi

The anaerobic ammonium oxidation (anammox) biofilm process commonly uses various inorganic carriers to enhance nitrogen removal under anaerobic conditions. This study aims to analyze the performance of nitrogen removal in anammox process using sugarcane bagasse as an organic carrier. The experiment was carried out by using an up‐flow anaerobic sludge blanket (UASB) reactor for treating artificial wastewater at room temperature. The reactor was fed with ammonium and nitrite with the concentrations of 70‐150 mg–N/L and variations in the hydraulic retention time of 24 and 12 h. The granular anammox belongs to the genus Candidatus Brocadia sinica that was added as an inoculum of the reactor operation. The experimental stoichiometric of anammox for ΔNO2‐–N: ΔNH4+–N and ΔNO3‐: ΔNH4+ were 1.24 and 0.18, respectively, which is similar to anammox stoichiometry. The maximum Nitrogen Removal Rate (NRR) has achieved 0.29 kg–N/m3.d at Nitrogen Loading Rate (NLR) 0.6 kg–N/m3.d. The highest ammonium conversion efficiency (ACE) and nitrogen removal efficiency (NRE) were 88% and 85%, respectively. Based on this results, it indicated that sugarcane bagasse as organic carriers could increase the amount of total nitrogen removal by provided of denitrification process but inhibited the anammox process at a certain COD concentration.


Author(s):  
Bruna Souza dos Santos ◽  
Eduardo Eyng ◽  
Paulo Rodrigo Stival Bittencourt ◽  
Laercio Mantovani Frare ◽  
Éder Lisandro de Moraes Flores ◽  
...  

Wastewaters from textile industries are known for their difficulty to treat, several alternative technologies are applied for their treatment. In this context, the study examined a hybrid treatment system, composed of electrocoagulation combined with a natural coagulant (extract of Moringa oleífera lam seeds) to remove reactive dye Blue 5G aqueous solutions. The work evaluated the use of milder operating conditions to improve the efficiency of treatment, with reduced demands for electrical power and coagulant.  The following factors were evaluated: electric current intensity, natural coagulant concentration and hydraulic retention time. A quadratic model was adjusted and validated at a 5% significance level. The overall optimization resulted in conditions of 0.28 A for electrical current intensity, 1000.00 mg L-1 of aqueous extract of Moringa oleífera lam and 5 min for hydraulic retention time. While operating under optimal conditions, the removal of 71.38% of color and 5.22 mg L-1 of iron residual concentration was achieved.


2020 ◽  
Vol 10 (1) ◽  
pp. 11-16
Author(s):  
Laily Isna Ramadhani ◽  
Sri Ismiyati Damayanti ◽  
Hanifrahmawan Sudibyo ◽  
Muhammad Mufti Azis ◽  
Wiratni Budhijanto

Indonesia is currently the most significant crude palm oil (CPO) producer in the world. In the production ofCPO, 0.7m3 of Palm Oil Mill Effluent (POME) is emitted as the wastewater for every ton of fresh fruit bunches processed in the palm oil mill.With the increasing amount of CPO production, an effective POME treatment system is urgently required to prevent severe environmental damage. The high organic content in the POME is a potential substrate forbio-methane production. The biomethane production is carried out by two groups of microbes, i.e., acidogenic and methanogenic microbes. Each group of bacteria performs optimally at different optimum conditions. To optimize the biomethane production, POME was treated sequentially by separating the acidogenic and methanogenic microbes into two stages of anaerobic fluidized bed reactors (AFBR). The steps were optimized differently according to the favorable conditions of each group of bacteria. Although perfect separation cannot be achieved, this study showed that pH control could split the domination of the bacteria, i.e., the first stage (maintained at pH 4-5) was dominated by the acidogenic microbes and the second stage (kept neutral) was governed by methanogens. In addition to the pH control, natural zeolitewas added as microbial immobilization media in the AFBR to improve the performance of the microorganisms, especially in preventing microbial wash out at short hydraulic retention time (HRT). This study was focused on the understanding of the effect of HRT on the performance of steady-state continuous AFBR. The first stage as the acidogenic reactorwas rununder acidic conditions (pH 4-5) at five different HRTs. In comparison, the second stage as the methanogenic reactorwasrun under the neutral condition at four different HRTs. In this work,short HRT (5 days) resulted in better performance in both acidogenic AFBR and methanogenic AFBR. The immobilization media was hence essential to reduce the risk of washout at such a short HRT. The two-stage system also resulted in quite a high percentage of soluble chemical oxygen demand (sCOD) removal, which was as much as 96.06%sCOD.


Sign in / Sign up

Export Citation Format

Share Document