scholarly journals Performance, Emissions, Combustion and Vibration Analysis of a CI Engine Fueled with Coconut and Used Palm Cooking Oil Methyl Ester

Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 990 ◽  
Author(s):  
Yew Heng Teoh ◽  
Heoy Geok How ◽  
Navaneetha Krishnan Balakrishnan ◽  
Thanh Danh Le ◽  
Huu Tho Nguyen

Biodiesels from coconut and palm cooking oil are viable alternatives to diesel fuel due to their environmental sustainability and similar physicochemical properties compared to diesel. In the present study, these fuels were tested separately in a diesel engine by blending with fossil diesel in proportions of 10%, 20%, 30% and 40% by volume. Experiments were conducted under a constant brake mean effective pressure (BMEP) of 400 kPa and at 2000 rpm. The results revealed similarities in engine performance, emissions, combustion and engine block vibration for used palm cooking oil methyl ester (UPME) fuel blends and coconut methyl ester (CME) fuel blends. Most blends resulted in slight improvements in brake specific energy consumption (BSEC) and brake thermal efficiency (BTE). A maximum reduction of 54%, 89% and 16.8% in pollutant emissions of brake specific hydrocarbons (BSHC), brake specific carbon monoxide (BSCO) and brake specific nitrogen oxides (BSNOx), respectively, was observed with UPME and CME in the blends. The cylinder pressure profiles when UPME-diesel and CME-diesel blends were used were comparable to a standard diesel pressure trace, however, some deviations in peak pressure were also noticed. It was also apparent from the results that engine vibration was influenced by the type of methyl ester used and its blend composition. Notably, the rate of pressure increase was maintained within an acceptable limit when the engine was fueled with both of the methyl ester blends.

Author(s):  
H. Sharon ◽  
Joel Jackson R. ◽  
Prabha C.

Feed stock cost and NOX emission are the major barriers for commercialization of biodiesel. Waste cooking oil is well identified as one of the cheapest feed stocks for biodiesel production. This chapter reduces NOX emission of waste cooking oil biodiesel. Test fuel blends are prepared by mixing diesel (20 to 50 v/v%), butanol (5 v/v%), and waste cooking oil biodiesel (45 to 75 v/v%). Fuel properties of waste cooking oil biodiesel are enhanced due to addition of diesel and butanol. Brake specific energy consumption of the blends is higher than diesel fuel. Harmful emissions like carbon monoxide, nitrous oxide, and smoke opacity are lower for blends than diesel fuel. Increasing biodiesel concentration in blend also reduces hydrocarbon emission to a significant extent. The obtained results justify the suitability of proposed cheap blends for diesel engine emission reduction.


2019 ◽  
Vol 8 (4) ◽  
pp. 12595-12598

Many researchers have been working on alternative fuels and it blends in order to enhance the performance of automobiles. There are number of alternative fuel blends have been tested on automobile engines and their performances have been analyzed. In this present work, Methyl Ester from Waste cooking oil to be prepared and going to blend with Diesel with different ratios, is an alternative fuel. The experiment is going to be conducted on the air cooled four stroke Diesel engine using these blends with different proportions and nozzle injection pressures, finally its performance characteristics to be analyzed.


Author(s):  
R. Anand ◽  
G. R. Kannan ◽  
P. Karthikeyan

The growing environmental concerns and the depletion of petroleum reserves have caused the development of alternative fuels. Biodiesel and alcohols are receiving increasing attention as alternative fuels for diesel engines due to well oxygenated, renewable fuels. In this study, a single cylinder, naturally aspirated, direct injection diesel engine has been experimentally investigated using ethanol-blended waste cooking oil methyl ester. Various proportion of biodiesel-ethanol blends were used in stability test at the different temperatures from 10 °C to 40 °C in the increment of 10°C. Based on the stability tests and improvement in fuel properties, B90E10 (90% biodiesel and 10% ethanol) and B80E20 (80% biodiesel and 20% ethanol) were selected for this investigation. Test results revealed that the improved engine characteristics with the use of B9E10 especially in comparison with B80E20. Reduction in brake thermal efficiency by 3.8% and slightly higher brake specific energy consumption of 15.1% were observed with B90E10 when compared to diesel at 100% load condition. Carbon monoxide, unburnt hydrocarbon, nitric oxide and smoke emission of B90E10 were reduced by 0.09% by vol., 10 ppm, 187 ppm and 12.9%, respectively compared to diesel. B90E10 exhibited lower peak pressure of 70.5 bar, slightly longer ignition delay of 14.2 °CA, and combustion duration of 43.3 °CA was also observed at 100% load condition.


2019 ◽  
Vol 31 (7) ◽  
pp. 1257-1280 ◽  
Author(s):  
Abbas Hojati ◽  
Alireza Shirneshan

In this research, a thermodynamic zero-dimensional model has been done to predict performance characteristics (in-cylinder pressure, heat released, and the thermal efficiency) of a diesel engine with the use of biodiesel–diesel fuel blends (B0, B20, B50, B80, and B100) at different compression ratios (14, 15, 16, 17, and 18). The corresponding mathematical and thermodynamic relationships have been solved in MATLAB. Based on the experimental tests, it was found that the developed model can predict the engine variables sufficiently. According to the results, the heat release rate and the cylinder pressure increased for all fuel blends by an increase in the compression ratio. Moreover, with the increasing biodiesel amount in the fuel blend (up to 50%) heat release rate and the cylinder pressure increased but these variables have a reduction when biodiesel percentage increases from 50 to 100 due to the lower heating value of waste cooking oil methyl ester in comparison with neat diesel fuel. Moreover, according to the experimental tests, carbon monoxide emission was reduced when biodiesel proportion increased in the fuel blend but the nitrogen oxides emitted from the engine enhanced when biodiesel amount in the fuel mixture increased. According to the results, it can be concluded that B50 has better combustion characteristics among all fuel blends.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Bjorn S. Santos ◽  
Sergio C. Capareda ◽  
Jewel A. Capunitan

Biodiesel from sunflower oil offers a potential as an alternative to petroleum-based diesel fuel and must be evaluated in terms of the resulting engine performance and exhaust emissions. Two diesel engines rated at 14.2 kW (small) and 60 kW (large) were operated on pure sunflower methyl ester (SFME) and its blends with a reference diesel (REFDIESEL). Results showed that less power and torque were delivered by both the small and large engines when ran on pure SFME than on REFDIESEL, while brake-specific fuel consumption (BSFC) was found to be higher in pure SFME. Blends of SFME with REFDIESEL (B5 and B20) showed negligible power loss and similar BSFC with the REFDIESEL. Higher concentrations of nitrogen oxides (), carbon dioxide (CO2), and total hydrocarbons (THC) in the exhaust emissions were observed for both pure SFME and SFME-REFDIESEL fuel blends. Comparison with soybean methyl ester indicates similar engine performance. Thus, blends of SFME with diesel may be used as a supplemental fuel for steady-state nonroad diesel engines to take advantage of the lubricity of biodiesel as well as contributing to the goal of lowering the dependence to petroleum diesel.


2019 ◽  
Vol 8 (2S8) ◽  
pp. 1835-1839

An Experiment has been conducted performance and emission and combustion characteristics of a single-cylinder by using country borage methyl ester (CBM) and diesel blend in a direct injection at a constant speed diesel engine. In the past few years, the investigation on the biofuels has been considerable interest by virtue of their unique physical and chemical properties. This experiment works involves the usage of country borage methyl ester and diesel blend, to study its effect on performance, combustion and emission characteristics. Diesel and country borage methyl ester fuel blends are 20%, 40%, 60%, 80%, 100%, and varying load of 25% increment from no load to full load. The experiment was carried out for engine performance parameter such as brake thermal efficiency (BTE) of CBM 20 blend was slightly higher 3% than that of diesel. And the engine emission parameters such as hydrogen emissions is reduced 22% for CBM 20 and 32.5% for CBM 40 blend. And NOx emission was slightly increased by 5% for CBM 20 and 8% for CBM 40.


Ingeniería ◽  
2017 ◽  
Vol 22 (1) ◽  
pp. 98
Author(s):  
Luisa Fernanda Mónico Muñoz ◽  
Juan José Sandoval Sotelo ◽  
Andrés Felipe Rodríguez Chaparro

Context: like many others, today the aeronautical industry has been forced to implement methods to mitigate the damage produced to the environment due to the emission of polluting gases and in doing so, confront the problem of global warming. In this context, research on the use of alternative fuels is of paramount importance, in particular the study of engine performance when using blends of Colombian Biodiesel based on palm oil with Jet A1.Method: as a starting point, we made a review of the state of the art so as to select which engine to study and then the alternative fuels to be used. Simultaneously, Colombian biodiesel based on palm oil was selected, as it has been shown to be a fuel with good performance when it is blended in percentages of 10%, 20% and 50%. Each of the blends were tested in the laboratory to obtain their viscosity, density and calorific values. A spreadsheet program was developed to conduct the analysis, which contemplated the physical properties of mixtures and engine parameters, as well as emissions of nitrous oxides (NOx), atomization and combustion produced by the use of mixtures. The results were compared against those of the Gasturbine simulation softwareResults: CFM 56-5B was chosen as the appropriate engine for the study, because it is currently the most used in the Colombian aeronautical industry. On the other hand, none of the alternative fuel blends generates the same engine performance when using Jet A1. The blends E10 and E20 have a similar behavior, with the novelty of generating less amount of NOx emissions and improving the atomization of the fuel.Conclusions:  When the engine’s performance with conventional fuel is comparing with Biodiesel mixtures, a decrease of the thrust is produced as the percentage of Biodiesel in the mixture increases. Because the mixtures of alternative fuel have a lower calorific value fuel consumption in these cases is always greater. However, when comparing the NOx levels produced, a decrease of this pollutant is observed when using Biodiesel blends. It is worth noting that it is of great interest for future work to evaluate other pollutant emissions and, in turn, the behavior of other types of Biodiesel in jet engines.Language: Spanish.


Sign in / Sign up

Export Citation Format

Share Document