scholarly journals Capsule Migration and Deformation in a Converging Micro-Capillary

Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 452
Author(s):  
Yiyang Wang ◽  
Panagiotis Dimitrakopoulos

The lateral migration of elastic capsules towards a microchannel centerline plays a major role in industrial and physiological processes. Via our computational investigation, we show that a constriction connecting two straight microchannels facilitates the lateral capsule migration considerably, which is relatively slow in straight channels. Our work reveals that the significant cross-streamline migration inside the constriction is dominated by the strong hydrodynamic forces due to the capsule size. However, in the downstream straight channel, the increased interfacial deformation at higher capillary numbers or a lower viscosity ratio and lower membrane hardness results in increased lateral cross-streamline migration. Thus, our work highlights the different migration mechanisms occurring over curved and straight streamlines.

Author(s):  
Jagannath Mahato ◽  
Dhananjay Kumar Srivastava ◽  
Dinesh Kumar Chandraker ◽  
Rajaram Lakkaraju

Abstract Investigations on flow dynamics of a compound droplet have been carried out in a two-dimensional fully-developed Poiseuille flow by solving the Navier-Stokes equations with the evolution of the droplet using the volume of fluid method with interface compression. The outer droplet undergoes elongation similar to a simple droplet of same size placed under similar ambient condition in the flow direction, but, the inner droplet evolves in compressed form. The compound droplet is varied starting from the centerline towards the walls of the channel. The simulations showed that on applying an offset, asymmetric slipper-like shapes are observed as opposed to symmetric bullet-like shapes through the centerline. Temporal dynamics, deformation patterns, and droplet shell pinch-off mode vary with the offset, with induction of lateral migration. Also, investigations are done on the effect of various parameters like droplet size, Capillary number, and viscosity ratio on the deformation magnitude and lateral migration.


1961 ◽  
Vol 1 (02) ◽  
pp. 59-60 ◽  
Author(s):  
J. Downie ◽  
F.E. Crane

Introduction The general application of Darcy's law to natural rocks has already been challenged in the literature. The evidence shows that the permeability as calculated from the Darcy equation can be a function of the pressure drop and the salt concentration of the water phase. Most explanations for aberrant behavior involve clays and their properties and have been qualitatively satisfactory. Recently, however, Odeh revived the theoretical views of Yuster. Since Yuster's concept implies a fundamental error in using Darcy's relationship for two-phase flow, and not merely that conditions may limit its use, Odeh's experimental support arouses considerable interest. However, Odeh's work as presented is thought to be inadequate. He has omitted important information about his materials and procedures; therefore, acceptance of his conclusions should be withheld. Since a clay effect is possible, Odeh should have been allowed space to present a more detailed account of the rocks which he used and the precautions which he took to avoid confounding the effects of clay and fluid circulation. In addition, it follows from Odeh's discussion that the oil relative permeability should increase as the viscosity ratio increases. Odeh presents data corroborating this deduction. It also follows that the oil relative permeability should decrease as the viscosity ratio of oil to water decreases. However, our results show that a high relative permeability, when once attained by using a viscous oil, may be maintained when that oil is replaced by an oil of much lower viscosity.


2021 ◽  
Vol 39 (3) ◽  
pp. 1001-1014
Author(s):  
Yap Yit Fatt ◽  
Afshin Goharzadeh

Particle deposition occurs in many engineering multiphase flows. A model for particle deposition in two-fluid flow is presented in this article. The two immiscible fluids with one carrying particles are model using incompressible Navier-Stokes equations. Particles are assumed to deposit onto surfaces as a first order reaction. The evolving interfaces: fluid-fluid interface and fluid-deposit front, are captured using the level-set method. A finite volume method is employed to solve the governing conservation equations. Model verifications are made against limiting cases with known solutions. The model is then used to investigate particle deposition in a stratified two-fluid flow and a cavity with a rising bubble. For a stratified two-fluid flow, deposition occurs more rapidly for a higher Damkholer number but a lower viscosity ratio (fluid without particle to that with particles). For a cavity with a rising bubble, deposition is faster for a higher Damkholer number and a higher initial particle concentration, but is less affected by viscosity ratio.


2019 ◽  
Vol 862 ◽  
pp. 385-420 ◽  
Author(s):  
Vivek Narsimhan

We develop perturbation theories to describe the flow dynamics of a droplet with a thin layer of insoluble surfactant whose mechanics are described by interfacial viscosity, i.e. a Boussinesq–Scriven constitutive law. The theories quantify droplet deformation in the limit of small capillary number, large viscosity ratio, or large shear Boussinesq number, to a sufficient level of approximation where one can extract information about nonlinear rheology and droplet breakup. In the first part of this manuscript, we quantify the Taylor deformation parameter and inclination angle in shear and extensional flows, developing expressions that resolve discrepancies between current analytical theories and boundary element simulations. Interestingly, the theories we develop appear to accurately describe the inclination angle of a clean droplet over a wider range of viscosity ratios and capillary numbers than previous works. In the second part of the manuscript, we calculate how interfacial viscosity alters the extra stress of a dilute suspension of droplets, in particular the shear stress, normal stress differences, shear thinning and extensional thickening. The normal stresses are intimately related to the lateral migration of droplets in wall-bound shear flow, and we explore the influence of interfacial viscosity on this phenomenon. We conclude by discussing how one can use these theories to describe droplet breakup, and how one can incorporate additional effects into the perturbation theories such as viscoelastic membranes and/or Marangoni flows.


2014 ◽  
Vol 30 (3) ◽  
pp. 299-305 ◽  
Author(s):  
I. Farahbakhsh ◽  
S. S. Nourazar ◽  
H. Ghassemi ◽  
H.-S. Dou ◽  
A. Nazari-Golshan

ABSTRACTIn the present study, the instability of laminar flow of two immiscible fluids is investigated. The theory of energy gradient is employed for the analysis. The distributions of energy gradient for various viscosity ratios, i.e., ratios of lower viscosity to higher one, are obtained and the results for the onset of instability are compared with the available experimental data. The comparison of the results shows excellent agreement with the existing experimental data. It will be also demonstrated that as the viscosity ratio decreases the flow becomes more stable even at high Reynolds numbers.


2013 ◽  
Vol 739 ◽  
pp. 421-443 ◽  
Author(s):  
Rajesh Kumar Singh ◽  
Xiaoyi Li ◽  
Kausik Sarkar

AbstractThe migration of a capsule enclosed by an elastic membrane in a wall-bounded linear shear is investigated using a front-tracking method. A detailed comparison with the migration of a viscous drop is presented varying the capillary number (in the case of a capsule, the elastic capillary number) and the viscosity ratio. In both cases, the deformation breaks the flow reversal symmetry and makes them migrate away from the wall. They quickly go through a transient evolution to eventually reach a quasi-steady state where the dynamics becomes independent of the initial position and only depends on the wall distance. Previous analytical theories predicted that for a viscous drop, in the quasi-steady state, the migration and slip velocities scale approximately with the square of the inverse of the drop–wall separation, whereas the drop deformation scales as the inverse cube of the separation. These power law relations are shown to hold for a capsule as well. The deformation and inclination angle of the capsule and the drop at the same wall separation show a crossover in their variation with the capillary number: the capsule shows a steeper variation than that of the drop for smaller capillary numbers and slower variation than the drop for larger capillary numbers. Using the Green’s function of Stokes flow, a semi-analytic theory is presented to show that the far-field stresslet that causes the migration has two distinct contributions from the interfacial stresses and the viscosity ratio, with competing effects between the two defining the dynamics. It predicts the scaling of the migration velocity with the capsule–wall separation, however, matching with the simulated result very well only away from the wall. A phenomenological correlation for the migration velocity as a function of elastic capillary number, wall distance and viscosity ratio is developed using the simulation results. The effects of different membrane hyperelastic constitutive equations – neo-Hookean, Evans–Skalak, and Skalak – are briefly investigated to show that the behaviour remains similar for different equations.


Author(s):  
James Cronshaw ◽  
Jamison E. Gilder

Adenosine triphosphatase (ATPase) activity has been shown to be associated with numerous physiological processes in both plants and animal cells. Biochemical studies have shown that in higher plants ATPase activity is high in cell wall preparations and is associated with the plasma membrane, nuclei, mitochondria, chloroplasts and lysosomes. However, there have been only a few ATPase localization studies of higher plants at the electron microscope level. Poux (1967) demonstrated ATPase activity associated with most cellular organelles in the protoderm cells of Cucumis roots. Hall (1971) has demonstrated ATPase activity in root tip cells of Zea mays. There was high surface activity largely associated with the plasma membrane and plasmodesmata. ATPase activity was also demonstrated in mitochondria, dictyosomes, endoplasmic reticulum and plastids.


Author(s):  
A. E. Hotchkiss ◽  
A. T. Hotchkiss ◽  
R. P. Apkarian

Multicellular green algae may be an ancestral form of the vascular plants. These algae exhibit cell wall structure, chlorophyll pigmentation, and physiological processes similar to those of higher plants. The presence of a vascular system which provides water, minerals, and nutrients to remote tissues in higher plants was believed unnecessary for the algae. Among the green algae, the Chaetophorales are complex highly branched forms that might require some means of nutrient transport. The Chaetophorales do possess apical meristematic groups of cells that have growth orientations suggestive of stem and root positions. Branches of Chaetophora incressata were examined by the scanning electron microscope (SEM) for ultrastructural evidence of pro-vascular transport.


Author(s):  
Christine M. Dannels ◽  
Christopher Viney

Processing polymers from the liquid crystalline state offers several advantages compared to processing from conventional fluids. These include: better axial strength and stiffness in fibers, better planar orientation in films, lower viscosity during processing, low solidification shrinkage of injection moldings (thermotropic processing), and low thermal expansion coefficients. However, the compressive strength of the solid is disappointing. Previous efforts to improve this property have focussed on synthesizing stiffer molecules. The effect of microstructural scale has been overlooked, even though its relevance to the mechanical and physical properties of more traditional materials is well established. By analogy with the behavior of metals and ceramics, one would expect a fine microstructure (i..e. a high density of orientational defects) to be desirable.Also, because much microstructural detail in liquid crystalline polymers occurs on a scale close to the wavelength of light, light is scattered on passing through these materials.


Sign in / Sign up

Export Citation Format

Share Document