scholarly journals Development of 2,3-Butanediol Production Process from Klebsiella aerogenes ATCC 29007 Using Extracted Sugars of Chlorella pyrenoidosa and Biodiesel-Derived Crude Glycerol

Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 517
Author(s):  
Ju Hun Lee ◽  
Do Yoon Lee ◽  
Soo Kweon Lee ◽  
Hyeong Ryeol Kim ◽  
Youngsang Chun ◽  
...  

Expectation for renewable energy is increasing due to environmental pollution such as fossil fuel depletion, CO2 emission, and harmful gases. Therefore, in this study, extracted sugars of microalgae, which cause algal blooms and crude glycerol, a biodiesel industry byproduct, were used simultaneously to produce 2,3-BDO. The 2,3-BDO production using only extracted algal sugars was about 4.8 g/L at 18 h, and the production of 2,3-BDO using both extracted algal sugar and crude glycerol was about 7 g/L at 18 h. It was confirmed that the main culture with crude glycerol was increased 1.5-fold compared to the case of using only extracted algal sugars. In addition, four components of the main medium (ammonium sulfate, casein hydrolysate, yeast extract, and crude glycerol) were statistically optimized and the concentrations of the medium were 12, 16, 12, and 13 g/L, respectively. In addition, the final 2,3-BDO production was about 11g/L, which 1.6-fold higher than before the optimization process. As a result, it was confirmed that 2,3-BDO production is possible through the simultaneous use of algal sugars and crude glycerol, which can greatly contribute to the development of zero-waste processes.

2010 ◽  
Vol 150 ◽  
pp. 370-370 ◽  
Author(s):  
Pinki Anand ◽  
Sweta Yadav ◽  
Vinod Kumar ◽  
Kakoli Dutt ◽  
R.K. Saxena

2020 ◽  
Vol 190 ◽  
pp. 00007
Author(s):  
Dhirajsing Rughoo

The challenges to integrating a greater share of renewable energy, more specifically solar energy into the power grid in tropical islands are that these islands have a complex microclimate, high humidity and high cloud coverage. Because of this, the power output from solar photovoltaic (SPV) plants is severely affected. In this manuscript, the results of a study carried out on the performance of a 15.2 MW solar photovoltaic (SPV) plant in the island nation Mauritius is presented. The net annual yield was 22 162 MWh and has avoided 22 162 metric t of CO2 emission into the atmosphere. An attempt is also made to develop a model to forecast the power that can be generated from the SPV plants at that location. The grid operator, the national Central Electricity Board (CEB) needs to know a priori, the energy mix for the subsequent few days so that the level of operation of fossil fuel fired thermal plants can be tuned accordingly to minimize the environment pollution of this pristine island.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4938
Author(s):  
Hellinton H. Takada ◽  
Celma O. Ribeiro ◽  
Oswaldo L. V. Costa ◽  
Julio M. Stern

Primary energy consumption is one of the key drivers of global CO2 emissions that, in turn, heavily depends on the efficiency of involved technologies. Either improvement in technology efficiency or the expansion of non-fossil fuel consumption requires large investments. The planning and financing of such investments by global policy makers or global energy firms require, in turn, reliable measures of associated global spread and their evolution in time, at least from the point of view of the principles for responsible investment (PRI). In this paper, our main contribution is the introduction of index measures for accessing global spread (that is, measures of inequality or inhomogeneity in the statistical distribution of a related quantity of interest) of technology efficiency and CO2 emission in primary energy consumption. These indexes are based on the Gini index, as used in economical sciences, and generalized entropy measures. Regarding primary energy sources, we consider petroleum, coal, natural gas, and non-fossil fuels. Between our findings, we attest some stable relations in the evolution of global spreads of technology efficiency and CO2 emission and a positive relation between changes in global spread of technology efficiency and use of non-fossil fuel.


2016 ◽  
Vol 34 (2) ◽  
pp. 279-291 ◽  
Author(s):  
Suvarna Fadnavis ◽  
K. Ravi Kumar ◽  
Yogesh K. Tiwari ◽  
Luca Pozzoli

Abstract. In this paper we examine CO2 emission hot spots and sink regions over India as identified from global model simulations during the period 2000–2009. CO2 emission hot spots overlap with locations of densely clustered thermal power plants, coal mines and other industrial and urban centres; CO2 sink regions coincide with the locations of dense forest. Fossil fuel CO2 emissions are compared with two bottom-up inventories: the Regional Emission inventories in ASia (REAS v1.11; 2000–2009) and the Emission Database for Global Atmospheric Research (EDGAR v4.2) (2000–2009). Estimated fossil fuel emissions over the hot spot region are  ∼  500–950 gC m−2 yr−1 as obtained from the global model simulation, EDGAR v4.2 and REAS v1.11 emission inventory. Simulated total fluxes show increasing trends, from 1.39 ± 1.01 % yr−1 (19.8 ± 1.9 TgC yr−1) to 6.7 ± 0.54 % yr−1 (97 ± 12 TgC yr−1) over the hot spot regions and decreasing trends of −0.95 ± 1.51 % yr−1 (−1 ± 2 TgC yr−1) to −5.7 ± 2.89 % yr−1 (−2.3 ± 2 TgC yr−1) over the sink regions. Model-simulated terrestrial ecosystem fluxes show decreasing trends (increasing CO2 uptake) over the sink regions. Decreasing trends in terrestrial ecosystem fluxes imply that forest cover is increasing, which is consistent with India State of Forest Report (2009). Fossil fuel emissions show statistically significant increasing trends in all the data sets considered in this study. Estimated trend in simulated total fluxes over the Indian region is  ∼  4.72 ± 2.25 % yr−1 (25.6 TgC yr−1) which is slightly higher than global growth rate  ∼  3.1 % yr−1 during 2000–2010.


2014 ◽  
Vol 57 (2) ◽  
pp. 295-301 ◽  
Author(s):  
Marylane de Sousa ◽  
Iuri Torquato Dantas ◽  
Anne Kamilly Nogueira Felix ◽  
Hosiberto Batista de Sant'Ana ◽  
Vânia Maria Maciel Melo ◽  
...  

2020 ◽  
Vol 54 (16) ◽  
pp. 9896-9907
Author(s):  
Kevin Robert Gurney ◽  
Yang Song ◽  
Jianming Liang ◽  
Geoffrey Roest
Keyword(s):  

2013 ◽  
Vol 13 (15) ◽  
pp. 7343-7358 ◽  
Author(s):  
M. Lopez ◽  
M. Schmidt ◽  
M. Delmotte ◽  
A. Colomb ◽  
V. Gros ◽  
...  

Abstract. Measurements of the mole fraction of the CO2 and its isotopes were performed in Paris during the MEGAPOLI winter campaign (January–February 2010). Radiocarbon (14CO2) measurements were used to identify the relative contributions of 77% CO2 from fossil fuel consumption (CO2ff from liquid and gas combustion) and 23% from biospheric CO2 (CO2 from the use of biofuels and from human and plant respiration: CO2bio). These percentages correspond to average mole fractions of 26.4 ppm and 8.2 ppm for CO2ff and CO2bio, respectively. The 13CO2 analysis indicated that gas and liquid fuel contributed 70% and 30%, respectively, of the CO2 emission from fossil fuel use. Continuous measurements of CO and NOx and the ratios CO/CO2ff and NOx/CO2ff derived from radiocarbon measurements during four days make it possible to estimate the fossil fuel CO2 contribution over the entire campaign. The ratios CO/CO2ff and NOx/CO2ff are functions of air mass origin and exhibited daily ranges of 7.9 to 14.5 ppb ppm−1 and 1.1 to 4.3 ppb ppm−1, respectively. These ratios are consistent with different emission inventories given the uncertainties of the different approaches. By using both tracers to derive the fossil fuel CO2, we observed similar diurnal cycles with two maxima during rush hour traffic.


2014 ◽  
Vol 48 (20) ◽  
pp. 11769-11776 ◽  
Author(s):  
Shuchi Talati ◽  
Haibo Zhai ◽  
M. Granger Morgan

Sign in / Sign up

Export Citation Format

Share Document