scholarly journals Atmospheric CO<sub>2</sub> source and sink patterns over the Indian region

2016 ◽  
Vol 34 (2) ◽  
pp. 279-291 ◽  
Author(s):  
Suvarna Fadnavis ◽  
K. Ravi Kumar ◽  
Yogesh K. Tiwari ◽  
Luca Pozzoli

Abstract. In this paper we examine CO2 emission hot spots and sink regions over India as identified from global model simulations during the period 2000–2009. CO2 emission hot spots overlap with locations of densely clustered thermal power plants, coal mines and other industrial and urban centres; CO2 sink regions coincide with the locations of dense forest. Fossil fuel CO2 emissions are compared with two bottom-up inventories: the Regional Emission inventories in ASia (REAS v1.11; 2000–2009) and the Emission Database for Global Atmospheric Research (EDGAR v4.2) (2000–2009). Estimated fossil fuel emissions over the hot spot region are  ∼  500–950 gC m−2 yr−1 as obtained from the global model simulation, EDGAR v4.2 and REAS v1.11 emission inventory. Simulated total fluxes show increasing trends, from 1.39 ± 1.01 % yr−1 (19.8 ± 1.9 TgC yr−1) to 6.7 ± 0.54 % yr−1 (97 ± 12 TgC yr−1) over the hot spot regions and decreasing trends of −0.95 ± 1.51 % yr−1 (−1 ± 2 TgC yr−1) to −5.7 ± 2.89 % yr−1 (−2.3 ± 2 TgC yr−1) over the sink regions. Model-simulated terrestrial ecosystem fluxes show decreasing trends (increasing CO2 uptake) over the sink regions. Decreasing trends in terrestrial ecosystem fluxes imply that forest cover is increasing, which is consistent with India State of Forest Report (2009). Fossil fuel emissions show statistically significant increasing trends in all the data sets considered in this study. Estimated trend in simulated total fluxes over the Indian region is  ∼  4.72 ± 2.25 % yr−1 (25.6 TgC yr−1) which is slightly higher than global growth rate  ∼  3.1 % yr−1 during 2000–2010.

2008 ◽  
Vol 5 (5) ◽  
pp. 1387-1393 ◽  
Author(s):  
T. Becker ◽  
L. Kutzbach ◽  
I. Forbrich ◽  
J. Schneider ◽  
D. Jager ◽  
...  

Abstract. Accurate determination of carbon balances in heterogeneous ecosystems often requires the extrapolation of point based measurements. The ground resolution (pixel size) of the extrapolation base, e.g. a land-cover map, might thus influence the calculated carbon balance, in particular if biogeochemical hot spots are small in size. In this paper, we test the effects of varying ground resolution on the calculated carbon balance of a boreal peatland consisting of hummocks (dry), lawns (intermediate) and flarks (wet surfaces). The generalizations in lower resolution imagery led to biased area estimates for individual micro-site types. While areas of lawns and hummocks were stable below a threshold resolution of ~60 cm, the maximum of the flark area was located at resolutions below 25 cm and was then decreasing with coarsening resolution. Using a resolution of 100 cm instead of 6 cm led to an overestimation of total CO2 uptake of the studied peatland area (approximately 14 600 m2) of ~5% and an underestimation of total CH4 emission of ~6%. To accurately determine the surface area of scattered and small-sized micro-site types in heterogeneous ecosystems (e.g. flarks in peatlands), a minimum ground resolution appears necessary. In our case this leads to a recommended resolution of 25 cm, which can be derived by conventional airborne imagery. The usage of high resolution imagery from commercial satellites, e.g. Quickbird, however, is likely to underestimate the surface area of biogeochemical hot spots. It is important to note that the observed resolution effect on the carbon balance estimates can be much stronger for other ecosystems than for the investigated peatland. In the investigated peatland the relative hot spot area of the flarks is very small and their hot spot characteristics with respect to CH4 and CO2 fluxes is rather modest.


2008 ◽  
Vol 5 (2) ◽  
pp. 1097-1117 ◽  
Author(s):  
T. Becker ◽  
L. Kutzbach ◽  
I. Forbrich ◽  
J. Schneider ◽  
D. Jager ◽  
...  

Abstract. Accurate determination of carbon balances in heterogeneous ecosystems often requires the extrapolation of point based measurements. The ground resolution (pixel size) of the extrapolation base, e.g. a land-cover map, might thus influence the calculated carbon balance, in particular if biogeochemical hot spots are small in size. In this paper, we test the effects of varying ground resolution on the calculated carbon balance of a boreal peatland consisting of hummocks (dry), lawns (intermediate) and flarks (wet surfaces). The generalizations in lower resolution imagery led to biased area estimates for individual micro-site types. While areas of lawns and hummocks were stable below a threshold resolution of ~60 cm, the maximum of the flark area was located at resolutions below 25 cm and was then decreasing with coarsening resolution. Using a resolution of 100 cm instead of 6 cm led to an overestimation of total CO2 uptake of the studied peatland area (approximately 14 600 m2) of ~6% and an underestimation of total CH4 emission of ~11%. To accurately determine the surface area of scattered and small-sized micro-site types in heterogeneous ecosystems (e.g. flarks in peatlands), a minimum ground resolution appears necessary. In our case this leads to a recommended resolution of 25 cm, which can be derived by conventional airborne imagery. The usage of high resolution imagery from commercial satellites, e.g. Quickbird, however, is likely to underestimate the surface area of biogeochemical hot spots. It is important to note that the observed resolution effect on the carbon balance estimates can be much stronger for other ecosystems than for the investigated peatland where the relative hot spot area of the flarks is very small and their hot spot characteristics with respect to CH4 and CO2 fluxes is rather modest.


Author(s):  
Thomas Kaminski ◽  
Marko Scholze ◽  
Peter Rayner ◽  
Michael Voßbeck ◽  
Michael Buchwitz ◽  
...  

Abstract The Paris Agreement establishes a transparency framework for anthropogenic carbon dioxide (CO2) emissions. It's core component are inventory-based national greenhouse gas emission reports, which are complemented by independent estimates derived from atmospheric CO2 measurements combined with inverse modelling. It is, however, not known whether such a Monitoring and Verification Support (MVS) capacity is capable of constraining estimates of fossil-fuel emissions to an extent that is sufficient to provide valuable additional information. The CO2 Monitoring Mission (CO2M), planned as a constellation of satellites measuring column-integrated atmospheric CO2 concentration (XCO2), is expected to become a key component of such an MVS capacity. Here we provide a novel assessment of the potential of a comprehensive data assimilation system using simulated XCO2 and other observations to constrain fossil fuel CO2 emission estimates for an exemplary 1-week period in 2008. We find that CO2M enables useful weekly estimates of country-scale fossil fuel emissions independent of national inventories. When extrapolated from the weekly to the annual scale, uncertainties in emissions are comparable to uncertainties in inventories, so that estimates from inventories and from the MVS capacity can be used for mutual verification. We further demonstrate an alternative, synergistic mode of operation, with the purpose of delivering a best fossil fuel emission estimate. In this mode, the assimilation system uses not only XCO2 and the other data streams of the previous (verification) mode, but also the inventory information. Finally, we identify further steps towards an operational MVS capacity.


Author(s):  
Georgiana Grigoraș ◽  
Bogdan Urițescu

Abstract The aim of the study is to find the relationship between the land surface temperature and air temperature and to determine the hot spots in the urban area of Bucharest, the capital of Romania. The analysis was based on images from both moderate-resolution imaging spectroradiometer (MODIS), located on both Terra and Aqua platforms, as well as on data recorded by the four automatic weather stations existing in the endowment of The National Air Quality Monitoring Network, from the summer of 2017. Correlation coefficients between land surface temperature and air temperature were higher at night (0.8-0.87) and slightly lower during the day (0.71-0.77). After the validation of satellite data with in-situ temperature measurements, the hot spots in the metropolitan area of Bucharest were identified using Getis-Ord spatial statistics analysis. It has been achieved that the “very hot” areas are grouped in the center of the city and along the main traffic streets and dense residential areas. During the day the "very hot spots” represent 33.2% of the city's surface, and during the night 31.6%. The area where the mentioned spots persist, falls into the "very hot spot" category both day and night, it represents 27.1% of the city’s surface and it is mainly represented by the city center.


2018 ◽  
Vol 52 (2) ◽  
pp. 519-534 ◽  
Author(s):  
V. E. Fedosov

Recent studies on Orthotrichoid mosses in Russia are summarized genus by genus. Orthotrichum furcatum Otnyukova is synonymized with Nyholmiella obtusifolia. Orthotrichum vittii is excluded from the Russian moss flora. Description of O. dagestanicum is amended. Fifty four currently recognized species from 9 genera of the Orthotrichaceae are presently known to occur in Russia; list of species with common synonyms and brief review of distribution in Russia is presented. Numerous problematic specimens with unresolved taxonomy were omitted for future. Revealed taxonomical inconsistencies in the genera Zygodon, Ulota, Lewinskya, Nyholmiella, Orthotrichum are briefly discussed. Main regularities of spatial differentiation of the family Orthotrichaceae in Russia are considered. Recently presented novelties contribute to the certain biogeographic pattern, indicating three different centers of diversity of the family, changing along longitudinal gradient. Unlike European one, continental Asian diversity of Orthotrichaceae is still poorly known, the Siberian specimens which were previously referred to European species in most cases were found to represent other, poorly known or undescribed species. North Pacific Region houses peculiar and poorly understood hot spot of diversity of Orthotrichoid mosses. Thus, these hot spots are obligatory to be sampled in course of revisions of particular groups, since they likely comprise under-recorded cryptic- or semi-cryptic species. Latitudinal gradient also contributes to the spatial differentiation of the revealed taxonomic composition of Orthotrichaceae.


Sociology ◽  
2021 ◽  
pp. 003803852110155
Author(s):  
Daniela Pirani ◽  
Vicki Harman ◽  
Benedetta Cappellini

Drawing on 34 semi-structured interviews, this study investigates the temporality of family practices taking place in the hot spot. It does so by looking at how breakfast is inserted in the economy of family time in Italy. Our data show that breakfast, contrary to other meals, allows the adoption of more individualised and asynchronous practices, hinged on the consumption of convenience products. These time-saving strategies are normalised as part of doing family. Although the existing literature suggests that convenience and care are in opposition, and consumers of convenience products can experience anxiety and a lack of personal integrity, such features were not a dominant feature of our participants’ accounts. These findings suggest that the dichotomies of hot/cold spots and care/convenience are not always experienced in opposition when embedded within family practices. Hence, this study furthers understandings of family meals, temporality and the distinction between hot and cold spots.


2013 ◽  
Vol 455 ◽  
pp. 466-469
Author(s):  
Yun Chuan Wu ◽  
Shang Long Xu ◽  
Chao Wang

With the increase of performance demands, the nonuniformity of on-chip power dissipation becomes greater, causing localized high heat flux hot spots that can degrade the processor performance and reliability. In this paper, a three-dimensional model of the copper microchannel heat sink, with hot spot heating and background heating on the back, was developed and used for numerical simulation to predict the hot spot cooling performance. The hot spot is cooled by localized cross channels. The pressure drop, thermal resistance and effects of hot spot heat flux and fluid flow velocity on the cooling of on-chip hot spots, are investigated in detail.


Genetics ◽  
1997 ◽  
Vol 145 (3) ◽  
pp. 563-572 ◽  
Author(s):  
Takafumi Mukaihara ◽  
Masatoshi Enomoto

Deletion formation between the 5′-mostly homologous sequences and between the 3′-homeologous sequences of the two Salmonella typhimurium flagellin genes was examined using plasmid-based deletion-detection systems in various Escherichia coli genetic backgrounds. Deletions in plasmid pLC103 occur between the 5′ sequences, but not between the 3′ sequences, in both RecA-independent and RecA-dependent ways. Because the former is predominant, deletion formation in a recA background depends on the length of homologous sequences between the two genes. Deletion rates were enhanced 30- to 50-fold by the mismatch repair defects, mutS, mutL and uvrD, and 250-fold by the ssb-3 allele, but the effect of the mismatch defects was canceled by the ΔrecA allele. Rates of the deletion between the 3′ sequences in plasmid pLC107 were enhanced 17- to 130-fold by ssb alleles, but not by other alleles. For deletions in pLC107, 96% of the endpoints in the recA+ background and 88% in ΔrecA were in the two hot spots of the 60- and 33-nucleotide (nt) homologous sequences, whereas in the ssb-3 background &gt;50% of the endpoints were in four- to 14-nt direct repeats dispersed in the entire 3′ sequences. The deletion formation between the homeologous sequences is RecA-independent but depends on the length of consecutive homologies. The mutant ssb allele lowers this dependency and results in the increase in deletion rates. Roles of mutant SSB are discussed with relation to misalignment in replication slippage.


SAGE Open ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 215824402098299
Author(s):  
Haishi Li ◽  
Xiangyi Xu ◽  
Shuaishuai Li

Entrepreneurship, as one of the important factors to promote industrial innovation, is closely related to the development of the regional economy. Based on the methods of Kernel density and standard deviation ellipse, this article presents the spatio-temporal patterns of entrepreneurship and innovation performance. The article also examines the spatial spillover mechanism of entrepreneurship on innovation performance by establishing spatial Durbin models. The heterogeneous results of the spatial regression models in six clusters are also discussed. The final results show that the spatio-temporal patterns of entrepreneurship are gradually presenting three major hot spots and two secondary hot spots while the spatio-temporal patterns of innovation performance are presenting four major hot spots and a secondary hot spot; the spatial distribution of both entrepreneurship and innovation performance are changing regularly; the spillover effects of entrepreneurship and innovation performance are both significant; the spatial spillover mechanisms in six automobile industrial clusters are different. The results can provide empirical support for decision-making in the automobile industry in China in the future.


2021 ◽  
Vol 7 (23) ◽  
pp. eabd6034
Author(s):  
C. Ronnie Drever ◽  
Susan C. Cook-Patton ◽  
Fardausi Akhter ◽  
Pascal H. Badiou ◽  
Gail L. Chmura ◽  
...  

Alongside the steep reductions needed in fossil fuel emissions, natural climate solutions (NCS) represent readily deployable options that can contribute to Canada’s goals for emission reductions. We estimate the mitigation potential of 24 NCS related to the protection, management, and restoration of natural systems that can also deliver numerous co-benefits, such as enhanced soil productivity, clean air and water, and biodiversity conservation. NCS can provide up to 78.2 (41.0 to 115.1) Tg CO2e/year (95% CI) of mitigation annually in 2030 and 394.4 (173.2 to 612.4) Tg CO2e cumulatively between 2021 and 2030, with 34% available at ≤CAD 50/Mg CO2e. Avoided conversion of grassland, avoided peatland disturbance, cover crops, and improved forest management offer the largest mitigation opportunities. The mitigation identified here represents an important potential contribution to the Paris Agreement, such that NCS combined with existing mitigation plans could help Canada to meet or exceed its climate goals.


Sign in / Sign up

Export Citation Format

Share Document