scholarly journals Machining of Inserts with PCD Cutting-Edge Technology and Determination of Optimum Machining Conditions Based on Roundness Deviation and Chip-Cross Section of AW 5083 AL-Alloy Verified with Grey Relation Analysis

Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1485
Author(s):  
Martin Miškiv-Pavlík ◽  
Jozef Jurko

This paper describes the important significance of cutting-edge technology in the machining of polycrystalline diamond (PCD) cutting inserts by comparing the evaluation criteria. The LASER technology of cutting-edge machining is compared with grinding and electrical discharge machining (EDM) technologies. To evaluate the data from the experiments, the Grey Relational Analysis (GRA) method was used to optimize the input factors of turning to achieve the required output parameters, namely the deviation of roundness and chip cross-section. The input factors of cutting speed, feed rate, depth of cut and corner radius were applied in the experiment for three different levels (minimum, medium and maximum). The optimal input factors for turning of aluminum alloy (AW 5083) were determined for the factorial plan according to Grey Relational Grade based on the GRA method for the multi-criteria of the output parameters. The results were confirmed by a verification test according to the GRA method and optimal values of input factors were recommended for the machining of Al-alloy (AW 5083) products. This material is currently being developed by engineers for forming selected components for the automotive and railway industries, mainly to reduce weight and energy costs. The best values of the output parameters were obtained at a cutting speed of 870 m/min, feed rate of 0.1 mm/min, depth of cut of 0.5 mm and a corner radius of 1.2 mm.

Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5677
Author(s):  
Elshaimaa Abdelnasser ◽  
Azza Barakat ◽  
Samar Elsanabary ◽  
Ahmed Nassef ◽  
Ahmed Elkaseer

This article presents the results of an experimental investigation into the machinability of Ti6Al4V alloy during hard turning, including both conventional and high-speed machining, using polycrystalline diamond (PCD) inserts. A central composite design of experiment procedure was followed to examine the effects of variable process parameters; feed rate, cutting speed and depth of cut (each at five levels) and their interaction effects on surface roughness and cutting temperature as process responses. The results revealed that cutting temperature increased with increasing cutting speed and decreasing feed rate in both conventional and high-speed machining. It was found that high-speed machining showed an average increase in cutting temperature of 65% compared with conventional machining. Nevertheless, high-speed machining showed better performance in terms of lower surface roughness despite using higher feed rates compared to conventional machining. High-speed machining of Ti6Al4V showed an improvement in surface roughness of 11% compared with conventional machining, with a 207% increase in metal removal rate (MRR) which offered the opportunity to increase productivity. Finally, an inverse relationship was verified between generated cutting temperature and surface roughness. This was attributed mainly to the high cutting temperature generated, softening, and decreasing strength of the material in the vicinity of the cutting zone which in turn enabled smoother machining and reduced surface roughness.


Author(s):  
Suresh Dhiman ◽  
Rakesh Sehgal ◽  
S. K. Sharma

Selection of any casting alloy is dependent on a wide variety of factors such as casting process, service requirement and economy of processing viz. weldability, castability and machinability. Out of these, machinability plays an important role in the selection of material for its commercial exploitation. In general, more than 80% of the manufactured parts are machined before they are ready for use. Thus machinability of a material controls significantly its economy in various applications. In this paper, machinabilty is evaluated by studying various data/parameters of Al alloy (A-390) such as cutting forces, tool tip interface temperature, surface finish and power consumption during turning at different cutting speed, depth of cut and feed rate. In this study, Al-Si alloys with different composition were subjected to machinability testing by varying the cutting speed, depth of cut and by keeping feed rate constant.


2014 ◽  
Vol 612 ◽  
pp. 123-129
Author(s):  
Hari Vasudevan ◽  
Naresh Deshpande ◽  
Ramesh Rajguru

Many glass fiber reinforced plastic (GFRP) composite components made from primary melt processes require additional machining to meet the requirements of assembly and accurate dimensional tolerances. Importance of woven fabric based glass fibre reinforced composites is widely known in many industrial applications. However, very little is known about machinability of these composites. Cutting force is treated as one of the primary measures for determining the machinability of any material.This paper presents an investigation into the longitudinal turning of woven fabric and epoxy based GFRP composites, using polycrystalline diamond tool, so as to analyze the effect of cutting parameters and insert radius on the cutting force. The force was measured through longitudinal turning, according to the experimental plan, as developed on the basis of Taguchi methodology. The signal to noise ratio and analysis of variance were applied to the experimental data, in order to determine the effect of the process variables on tangential cutting force. Statistical results indicated that the cutting force is significantly influenced (at a 95% confidence level) by feed rate, followed by depth of cut, whereas, cutting speed and insert radius have a smaller influence. The cutting force also increases with the increase in feed rate and depth of cut.


2018 ◽  
Vol 7 (3.1) ◽  
pp. 158
Author(s):  
Ramanan. G ◽  
Neela Rajan.R.R ◽  
Jai Aultrin.K.S ◽  
Pradeep. P

Metal matrix composite imparts several advantages over alloys. The MMCs exhibit improved properties compared with monolithic alloy. They are particularly suited for applications that require higher strength, dimensional stability and enhanced structural rigidity. Aluminium composite materials are engineered materials made from at least two or more constituent materials having different physical or chemical properties. In this work Seventeen turning experiments were conducted using response surface methodology. The machining parameters cutting speed, feed rate, and depth of cut are varied with respect to different machining conditions for each run. The optimal parameters were predicted by grey relational analysis technique. The optimum process parameter predicted from RSM techniques is cutting speed 250m/min, feed rate 0.06mm and depth of cut 1.5mm are found. 


Author(s):  
Shen-Jenn Hwang ◽  
Yi-Hung Tsai

The present study propose an innovative turn-boring operation method and focuses on finding optimal turn-boring process parameters for 15-5PH Stainless steel by considering multiple performance characteristics using Taguchi orthogonal array with the grey relational analysis, the effect of machining variables such as concentration of cutting fluid , temperature of cutting fluid , feed rate, depth of cut and cutting speed are optimized with considerations of multiple performance characteristics namely surface roughness, roundness error and material removal rate, the optimal values were found out from the Grey relational grade. The result of the Analysis of Variances (ANOVA) is shown that the most significant factor is cutting speed, followed by feed rate, concentration of cutting fluid, radial depth of cut and temperature of cutting fluid. Finally, confirmation tests were carried out to make a comparison between the experimental results and developed model. Experimental results have shown that machining performance in the turn-boring process can be improved effectively through this approach.


Author(s):  
Shen Jenn Hwang ◽  
Yi-Hung Tsai

The present study propose an innovative turn-boring operation method and focuses on finding optimal turn-boring process parameters for AA7050-T7451 by considering multiple performance characteristics using Taguchi orthogonal array with the grey relational analysis, the effect of cutting variables such as, feed rate, depth of cut and cutting speed are optimized with considerations of multiple performance characteristics namely surface roughness, roundness error, material removal rate and power consumption the optimal values were found out from the Grey relational grade. The result of the Analysis of Variances (ANOVA) is proved that the most significant factor is cutting speed, followed by feed rate, radial depth of cut. Finally, confirmation tests were performed to make a comparison between the experimental results. Experimental results have shown that machining performance in precision turn-boring process can be improved effectively through this approach


Author(s):  
Shen-Jenn Hwang ◽  
Xin-Tang Li

The present study propose an innovative turn-boring operation method and focuses on finding optimal turn-boring process parameters for Ti-6Al-4V by considering multiple performance characteristics using Taguchi orthogonal array with the grey relational analysis, the effect of machining variables such as, feed rate, depth of cut and cutting speed are optimized with considerations of multiple performance characteristics namely surface roughness, roundness error, material removal rate and power consumption the optimal values were found out from the Grey relational grade. The result of the Analysis of Variances (ANOVA) is shown that the most significant factor is cutting speed, followed by feed rate, radial depth of cut. Finally, confirmation tests were carried out to make a comparison between the experimental results. Experimental results have shown that machining performance in the turn-boring process can be improved effectively through this approach.


Author(s):  
A. Pandey ◽  
R. Kumar ◽  
A. K. Sahoo ◽  
A. Paul ◽  
A. Panda

The current research presents an overall performance-based analysis of Trihexyltetradecylphosphonium Chloride [[CH3(CH2)5]P(Cl)(CH2)13CH3] ionic fluid mixed with organic coconut oil (OCO) during turning of hardened D2 steel. The application of cutting fluid on the cutting interface was performed through Minimum Quantity Lubrication (MQL) approach keeping an eye on the detrimental consequences of conventional flood cooling. PVD coated (TiN/TiCN/TiN) cermet tool was employed in the current experimental work. Taguchi’s L9 orthogonal array and TOPSIS are executed to analysis the influences, significance and optimum parameter settings for predefined process parameters. The prime objective of the current work is to analyze the influence of OCO based Trihexyltetradecylphosphonium Chloride ionic fluid on flank wear, surface roughness, material removal rate, and chip morphology. Better quality of finish (Ra = 0.2 to 1.82 µm) was found with 1% weight fraction but it is not sufficient to control the wear growth. Abrasion, chipping, groove wear, and catastrophic tool tip breakage are recognized as foremost tool failure mechanisms. The significance of responses have been studied with the help of probability plots, main effect plots, contour plots, and surface plots and the correlation between the input and output parameters have been analyzed using regression model. Feed rate and depth of cut are equally influenced (48.98%) the surface finish while cutting speed attributed the strongest influence (90.1%). The material removal rate is strongly prejudiced by cutting speed (69.39 %) followed by feed rate (28.94%) whereas chip reduction coefficient is strongly influenced through the depth of cut (63.4%) succeeded by feed (28.8%). TOPSIS significantly optimized the responses with 67.1 % gain in closeness coefficient.


2016 ◽  
Vol 836-837 ◽  
pp. 168-174 ◽  
Author(s):  
Ying Fei Ge ◽  
Hai Xiang Huan ◽  
Jiu Hua Xu

High-speed milling tests were performed on vol. (5%-8%) TiCp/TC4 composite in the speed range of 50-250 m/min using PCD tools to nvestigate the cutting temperature and the cutting forces. The results showed that radial depth of cut and cutting speed were the two significant influences that affected the cutting forces based on the Taguchi prediction. Increasing radial depth of cut and feed rate will increase the cutting force while increasing cutting speed will decrease the cutting force. Cutting force increased less than 5% when the reinforcement volume fraction in the composites increased from 0% to 8%. Radial depth of cut was the only significant influence factor on the cutting temperature. Cutting temperature increased with the increasing radial depth of cut, feed rate or cutting speed. The cutting temperature for the titanium composites was 40-90 °C higher than that for the TC4 matrix. However, the cutting temperature decreased by 4% when the reinforcement's volume fraction increased from 5% to 8%.


2010 ◽  
Vol 447-448 ◽  
pp. 51-54
Author(s):  
Mohd Fazuri Abdullah ◽  
Muhammad Ilman Hakimi Chua Abdullah ◽  
Abu Bakar Sulong ◽  
Jaharah A. Ghani

The effects of different cutting parameters, insert nose radius, cutting speed and feed rates on the surface quality of the stainless steel to be use in medical application. Stainless steel AISI 316 had been machined with three different nose radiuses (0.4 mm 0.8 mm, and 1.2mm), three different cutting speeds (100, 130, 170 m/min) and feed rates (0.1, 0.125, 0.16 mm/rev) while depth of cut keep constant at (0.4 mm). It is seen that the insert nose radius, feed rates, and cutting speed have different effect on the surface roughness. The minimum average surface roughness (0.225µm) has been measured using the nose radius insert (1.2 mm) at lowest feed rate (0.1 mm/rev). The highest surface roughness (1.838µm) has been measured with nose radius insert (0.4 mm) at highest feed rate (0.16 mm/rev). The analysis of ANOVA showed the cutting speed is not dominant in processing for the fine surface finish compared with feed rate and nose radius. Conclusion, surface roughness is decreasing with decreasing of the feed rate. High nose radius produce better surface finish than small nose radius because of the maximum uncut chip thickness decreases with increase of nose radius.


Sign in / Sign up

Export Citation Format

Share Document