scholarly journals Innovative Technologies for District Heating and Cooling: InDeal Project

Proceedings ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 1 ◽  
Author(s):  
Serafeim Moustakidis ◽  
Ioannis Meintanis ◽  
Nicos Karkanias ◽  
George Halikias ◽  
Elise Saoutieff ◽  
...  

The paper discusses the outcomes of the conference organized by the InDeal project. The conference took place on 12 December 2018 in Montpellier as part of the EnerGaia energy forum 2018. A holistic interdisciplinary approach for district heating and cooling (DHC) networks is presented that integrates heterogeneous innovative technologies from various scientific sectors. The solution is based on a multi-layer control and modelling framework that has been designed to minimize the total plant production costs and optimize heating/cooling distribution. Artificial intelligence tools are employed to model uncertainties associated with weather and energy demand forecasts, as well as quantify the energy storage capacity. Smart metering devices are utilized to collect information about all the crucial heat substations’ parameters, whereas a web-based platform offers a unique user environment for network operators. Three new technologies have been further developed to improve the efficiency of pipe design of DHC systems: (i) A new sustainable insulation material for reducing heat losses, (ii) a new quick-fit joint for an easy installation, and (iii) a new coating for reducing pressure head losses. The results of a study on the development and optimization of two energy harvesting systems are also provided. The assessment of the environmental, economic and social impact of the proposed holistic approach is performed through a life cycle analysis. The validation methodology of the integrated solution is also described, whereas conclusions and future work are finally given.

1996 ◽  
Vol 118 (4) ◽  
pp. 803-809 ◽  
Author(s):  
R. Yokoyama ◽  
K. Ito ◽  
Y. Matsumoto

A multistage expansion planning problem is discussed concerning a gas turbine cogeneration plant for district heating and cooling using an optimization approach. An optimal sizing method for single-stage planning proposed by the authors is extended to this case. Equipment capacities and utility maximum demands at each expansion stage are determined so as to minimize the levelized annual total cost subject to increasing energy demands. A numerical study on a simple-cycle gas turbine cogeneration plant to be installed in a district development project clarifies the relationship between optimal expansion planning and energy demand trend, and shows the effectiveness of the proposed method.


Author(s):  
D. Cerra ◽  
M. Alberdi-Pagola ◽  
T.R. Andersen ◽  
K.W. Tordrup ◽  
S.E. Poulsen

We assess the feasibility of a collective district heating and cooling network based on a foundation pile heat exchanger in a new urban area in Vejle, Denmark. A thermogeological model for the area is developed based on geophysical investigations and borehole information. In tandem with a building energy demand model, the subsurface thermal properties serve as the input for a newly developed computational temperature model for collective heating and cooling with energy piles. The purpose of the model is to estimate the long-term performance and maximum liveable area that the energy piles are able to support. We consider two case studies where residential and office buildings dominate the building mass. We find that three to four floors can be supplied with heating and cooling from the energy piles, depending on the use and design of the buildings.


2020 ◽  
Vol 2 (4) ◽  
pp. 392-405
Author(s):  
Francesco Neirotti ◽  
Michel Noussan ◽  
Marco Simonetti

The Life Cycle Assessment methodology has proven to be effective in evaluating the impacts of goods production throughout their life cycle. While many studies are available on specific products, in recent years a growing interest is related to the analysis of services, including energy supply for final customers. Different LCA evaluations are available for electricity, while the heating and cooling sector has not yet been properly investigated. The objective of this study is the analysis of the specific impacts of the heat supplied to the final users connected to a district heating system, in comparison with traditional individual natural gas boilers, which represent the baseline heating solution in several urban contexts in Europe. The results show that the comparison is heavily dependent on the allocation method used for combined heat and power plant production. District Heating impact on heat supplied to the users can vary from 0.10 to 0.47 kgCO2eq/kWh, while distributed natural gas boilers present an overall impact equal to 0.27 kgCO2eq/kWh.


2019 ◽  
Vol 9 (15) ◽  
pp. 3194 ◽  
Author(s):  
Urbanucci ◽  
Testi ◽  
Bruno

District heating and cooling networks based on trigeneration systems and renewable energy technologies are widely acknowledged as an energy efficient and environmentally benign solution. These energy systems generally include back-up units, namely fossil-fuel boilers and electric chillers, to enhance system flexibility and cover peak energy demand. On the other hand, 4th generation district heating networks are characterized by low-temperature water distribution to improve energy and exergy efficiencies. Moreover, reversible heat pumps are a versatile technology, capable of providing both heating and cooling, alternately. In this paper, the integration of reversible heat pumps as single back-up units in hybrid renewable trigeneration systems serving low-energy micro-district heating and cooling networks is investigated. A detailed modeling of the system is provided, considering part-load and ambient condition effects on the performance of the units. Size and annual operation of the proposed system are optimized in a case study, namely a large office building located in Pisa (Italy), by means of a genetic algorithm-based procedure. A comparison with the conventional trigeneration system is performed in terms of economic and environmental perspectives. Results show that the integration of reversible heat pumps is an economically viable solution capable of reducing by 7% the equivalent annual cost, increasing the installed power of renewables up to 23%, and lowering by 11% carbon dioxide emissions, compared to the energy system with conventional back-up units.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2190
Author(s):  
Lingwei Zhang ◽  
Yufei Wang ◽  
Xiao Feng

In the process industry, a large amount of low-grade waste heat is discharged into the environment. Furthermore, district heating and cooling systems require considerable low-grade energy. The integration of the two systems has great significance for energy saving. Because the energy demand of consumers varies in periods, the design and operation of an industrial waste heat recovery system need to match with the fluctuations of district energy demand. However, the impact of the periodic changes on the integration schemes are not considered enough in existing research. In this study, a framework method for solving above problem is proposed. Industrial waste heat was integrated with a district heating and cooling system through a heat recovery loop. A three-step mathematical programming method was used in design and operation optimization for multiperiod integration. A case study was conducted, and the results show that the multiperiod optimization method can bring significant benefits to the system. By solving the mixed integer nonlinear programming model, the optimal operation plans of the integration in different periods can be obtained.


1995 ◽  
Vol 117 (1) ◽  
pp. 53-59 ◽  
Author(s):  
R. Yokoyama ◽  
K. Ito

An optimal planning method for cogeneration plants proposed earlier is extended to the case with multiple optimization criteria. Equipment capacities and utility maximum demands are determined so as to minimize both the annual total cost and the annual primary energy consumption in consideration of plants’ operational strategies for energy demand requirements. This problem is considered as a multi-objective optimization one, and a discrete set of Pareto optimal solutions is derived numerically by the weighting method. Through a numerical study on a simple cycle gas turbine cogeneration plant used for district heating and cooling, a trade-off relationship between the economic and energy-saving properties is clarified.


2019 ◽  
Vol 238 ◽  
pp. 963-971 ◽  
Author(s):  
Eui-Jong Kim ◽  
Xi He ◽  
Jean-Jacques Roux ◽  
Kévyn Johannes ◽  
Frédéric Kuznik

2017 ◽  
Vol 14 ◽  
pp. 89-93 ◽  
Author(s):  
Otto Hyvärinen ◽  
Antti Mäkelä ◽  
Matti Kämäräinen ◽  
Hilppa Gregow

Abstract. We examined the feasibility of long-range forecasts of temperature for needs of the energy sector in Helsinki, Finland. The work was done jointly by Finnish Meteorological Institute (FMI) and Helen Ltd, the main Helsinki metropolitan area energy provider, and especially provider of district heating and cooling. Because temperatures govern the need of heating and cooling and, therefore, the energy demand, better long-range forecasts of temperature would be highly useful for Helen Ltd. Heating degree day (HDD) is a parameter that indicates the demand of energy to heat a building. We examined the forecasted monthly HDD values for Helsinki using UK Met Office seasonal forecasts with the lead time up to two months. The long-range forecasts of monthly HDD showed some skill in Helsinki in winter 2015–2016, especially if the very cold January is excluded.


Resources ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 27 ◽  
Author(s):  
Serafeim Moustakidis ◽  
Ioannis Meintanis ◽  
George Halikias ◽  
Nicos Karcanias

This paper presents a holistic innovative solution for the transformation of the current district heating and cooling systems to automated more efficient systems. A variety of technological advancements have been developed and integrated to support the effective energy management of future district heating and cooling sector. First, we identify and discuss the main challenges and needs that are in line with the EU objectives and policy expectations. We give an overview of the main parts that our solution consists of, with emphasis on the forecasting tools and an advanced control system that addresses unit commitment and economic load dispatch problems. The proposed control approach employs distributed and scalable optimisation algorithms for optimising the short-term operations of a district heating and cooling plant subject to technical constraints and uncertainties in the energy demand. To test the performance and validate the proposed control system, a district heating plant with multiple energy generation units and real-life heat load data were used. Simulation experiments were also used to evaluate the benefits of using thermal storage units in district heating systems. The results show that the proposed method could achieve significant cost savings when energy storage is employed. The proposed control strategy can be applied for both operating optimally district heating plants with storage and supporting investment planning for new storage units.


2021 ◽  
Vol 312 ◽  
pp. 02015
Author(s):  
Alessandro Cannavale ◽  
Francesco Carlucci ◽  
Francesco Fiorito ◽  
Francesco Martellotta ◽  
Ubaldo Ayr ◽  
...  

Thermal performances of window frames and glazing represent a field of growing research efforts - worldwide - aiming to reduce energy consumption and achieve indoor comfort. A combination of newly designed super-insulated window frames and innovative glazing technologies may enhance the performance of windows. Aerogel-based “thermal breaks” for window frames, coupled with high-performing glazing, may lead to significant energy saving. In this work, yearly energy use for heating and cooling were assessed in several locations, for building models equipped with innovative technologies, for glazing and frames. The results of numerical simulations confirmed the opportunities offered by new technologies.


Sign in / Sign up

Export Citation Format

Share Document