scholarly journals Wearable FES Electrodes

Proceedings ◽  
2019 ◽  
Vol 32 (1) ◽  
pp. 13
Author(s):  
Tyler ◽  
Mavridis

Functional electrical stimulation (FES) has been used to revitalise the muscles of people suffering from various kinds of injury. However, when human skin is incorporated into electrical circuits, it must not be treated as a passive component. Skin’s electrical properties must be known when electrodes deliver electrical stimulation to the body, whether by hydrogel electrodes or by electrodes embedded in apparel. Failure to address this issue increases the risk of skin burns due to too high current through the skin/electrode interface. We have demonstrated that there is a relationship between electrode size and measured voltage. The rise of voltage with a reduction of electrode size can be explained by the diminution of the skin contact area with resulting higher skin/electrode impedances. Thus, finding an electrical skin model that represents the behaviour of human skin is important for circuit design and the product development process.

PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0125609 ◽  
Author(s):  
José Luis Vargas Luna ◽  
Matthias Krenn ◽  
Jorge Armando Cortés Ramírez ◽  
Winfried Mayr

PLoS ONE ◽  
2015 ◽  
Vol 10 (6) ◽  
pp. e0130368 ◽  
Author(s):  
José Luis Vargas Luna ◽  
Matthias Krenn ◽  
Jorge Armando Cortés Ramírez ◽  
Winfried Mayr

2021 ◽  
Author(s):  
Hao Zhao ◽  
Jingwen Xu ◽  
Haitao Yuan ◽  
Endong Zhang ◽  
Nan Dai ◽  
...  

Inspired by the skin biofunction of protecting the body from microorganism invasion, artificially manufacturing human skin in vitro with promising antibacterial capability and cell affinity is urgently required in wound...


1990 ◽  
Vol 63 (3) ◽  
pp. 424-438 ◽  
Author(s):  
Z. Bing ◽  
L. Villanueva ◽  
D. Le Bars

1. Recordings were made from neurons in the left medullary subnucleus reticularis dorsalis (SRD) of anesthetized rats. Two populations of neurons were recorded: neurons with total nociceptive convergence (TNC), which gave responses to A delta- and C-fiber activation from the entire body after percutaneous electrical stimulation, and neurons with partial nociceptive convergence (PNC), which responded to identical stimuli with an A delta-peak regardless of which part of the body was stimulated and with a C-fiber peak of activation from some, mainly contralateral, parts of the body. 2. The effects of various, acute, transverse sections of the cervical (C4-C5) spinal cord on the A delta- and C-fiber-evoked responses were investigated by building poststimulus histograms (PSHs) after 50 trials of supramaximal percutaneous electrical stimulation of the extremity of either hindpaw (2-ms duration; 3 times threshold for C-fiber responses), before and 30-40 min after making the spinal lesion. 3. In the case of TNC neurons, hemisections of the left cervical cord blocked the responses elicited from the right hindpaw and slightly, but not significantly, diminished those evoked from the left hindpaw. Conversely, hemisections of the right cervical cord abolished TNC responses elicited from the left hindpaw without significantly affecting the responses elicited from the right hindpaw. 4. Lesioning the dorsal columns or the left dorsolateral funiculus was found not to affect the TNC neuronal responses elicited from either hindpaw. By contrast, lesioning the left lateral funiculus or the most lateral part of the ventrolateral funiculus, respectively, reduced and blocked the responses elicited from the right hindpaw without affecting those evoked from the left hindpaw. 5. After lesions that included the most lateral parts of the left ventral funiculus, PNC neuronal responses elicited from the right hindpaw were also abolished, whereas those elicited from the left hindpaw remained unchanged. 6. We conclude that the signals responsible for the activation of SRD neurons travel principally in the lateral parts of the ventrolateral quadrant, a region that classically has been implicated in the transmission of noxious information. Both a crossed and a double-crossed pathway are involved in this process. The postsynaptic fibers of the dorsal columns and the spinocervical and spinomesencephalic tracts do not appear to convey signals that activate SRD neurons. 7. The findings also suggest that lamina I nociceptive specific neurons, the axons of which travel within the dorsolateral funiculus, do not contribute very much to the activation of SRD neurons.


1989 ◽  
Vol 8 (5) ◽  
pp. 853-859 ◽  
Author(s):  
Ronald C. Wester ◽  
Howard I. Maibach

Contaminants exist in ground and surface water. Human skin has the capacity to bind and then absorb these contaminants into the body during swimming and bathing. Powdered human stratum corneum will bind both lipid-soluble (alachlor, polychlorinated biphenyls [PCBs], benzene) and water-soluble (nitroaniline) chemicals. In vitro (human skin) and in vivo (Rhesus monkey) studies show that these chemicals readily distribute into skin, and then some of the chemical is absorbed into the body. Linearity in binding and absorption exists for nitroaniline over a 10-fold concentration range. Multiple exposure to benzene is at least cumulative. Binding and absorption can be significant for exposures as short as 30 min, and will increase with time. Absorption with water dilution increased for alachlor, but not for dinoseb. Soap reversed the partitioning of alachlor between human stratum corneum and water. The PCBs could be removed from skin by soap and water (70% efficiency) for up to 3 h and then decontamination potential decreased, due to continuing skin absorption. The model in vitro and in vivo systems used should permit easy estimation of this area of extensive human exposure effect on risk assessment.


2006 ◽  
Vol 86 (7) ◽  
pp. 987-1000 ◽  
Author(s):  
Chia-Ling Ho ◽  
Kenneth G Holt ◽  
Elliot Saltzman ◽  
Robert C Wagenaar

Abstract Background and Purpose. Children with cerebral palsy (CP) often are faced with difficulty in walking. The purpose of this experiment was to determine the effects of functional electrical stimulation (FES) applied to the gastrocnemius-soleus muscle complex on the ability to produce appropriately timed force and reduce stiffness (elastic property of the body) and on stride length and stride frequency during walking. Subjects and Methods. Thirteen children with spastic CP (including 4 children who were dropped from the study due to their inability to cooperate) and 6 children who were developing typically participated in the study. A crossover study design was implemented. The children with spastic CP were randomly assigned to either a group that received FES for 15 trials followed by no FES for 15 trials or a group that received no FES for 15 trials followed by FES for 15 trials. The children who were having typical development walked without FES. Kinematic data were collected for the children with CP in each walking condition and for the children who were developing typically. Impulse (force-producing ability) and stiffness were estimated from an escapement-driven pendulum and spring system model of human walking. Stride length and stride frequency also were measured. To compare between walking conditions and between the children with CP and the children who were developing typically, dimensional analysis and speed normalization procedures were used. Results. Nonparametric statistics showed that there was no significant difference between the children with CP in the no-FES condition and the children who were developing typically on speed-normalized dimensionless impulse. In contrast, the children with CP in the FES condition had a significantly higher median value than the children who were developing typically. The FES significantly increased speed-normalized dimensionless impulse from 10.02 to 16.32 when comparing walking conditions for the children with CP. No significant differences were found between walking conditions for stiffness, stride length, and stride frequency. Discussion and Conclusion. The results suggest that FES is effective in increasing impulse during walking but not in decreasing stiffness. The effect on increasing impulse does not result in more typical spatiotemporal gait parameters. [Ho CL, Holt KG, Saltzman E, Wagenaar RC. Functional electrical stimulation changes dynamic resources in children with spastic cerebral palsy. Phys Ther. 2006;86:987–1000.]


1990 ◽  
Vol 63 (5) ◽  
pp. 1118-1127 ◽  
Author(s):  
L. Villanueva ◽  
K. D. Cliffer ◽  
L. S. Sorkin ◽  
D. Le Bars ◽  
W. D. Willis

1. Recordings were made in anesthetized monkeys from neurons in the medullary reticular formation (MRF) caudal to the obex. Responses of 19 MRF neurons to mechanical, thermal, and/or electrical stimulation were examined. MRF neurons exhibited convergence of nociceptive cutaneous inputs from widespread areas of the body and face. 2. MRF neurons exhibited low levels of background activity. Background activity increased after periods of intense cutaneous mechanical or thermal stimulation. Nearly all MRF neurons tested failed to respond to heterosensory stimuli (flashes, whistle sounds), and none responded to joint movements. 3. MRF neurons were excited by and encoded the intensity of noxious mechanical stimulation. Responses to stimuli on contralateral limbs were greater than those to stimuli on ipsilateral limbs. Responses were greater to stimuli on the forelimbs than to stimuli on the hindlimbs. 4. MRF neurons responded to noxious thermal stimulation (51 degrees C) of widespread areas of the body. Mean responses from stimulation at different locations were generally parallel to those for noxious mechanical stimulation. Responses increased with intensity of noxious thermal stimulation (45-50 degrees C). 5. MRF neurons responded with one or two peaks of activation to percutaneous electrical stimulation applied to the limbs, the face, or the tail. The differences in latency of responses to stimulating two locations along the tail suggested that activity was elicited by activation of peripheral fibers with a mean conduction velocity in the A delta range. Stimulation of the contralateral hindlimb elicited greater responses, with lower thresholds and shorter latencies, than did stimulation of the ipsilateral hindlimb. 6. Electrophysiological properties of monkey MRF neurons resembled those of neurons in the medullary subnucleus reticularis dorsalis (SRD) in the rat. Neurons in the caudal medullary reticular formation could play a role in processing nociceptive information. Convergence of nociceptive cutaneous input from widespread areas of the body suggests that MRF neurons may contribute to autonomic, affective, attentional, and/or sensory-motor processes related to pain.


2020 ◽  
Vol 318 (3) ◽  
pp. R579-R589 ◽  
Author(s):  
Oliver Typolt ◽  
Davide Filingeri

In contrast to other species, humans are believed to lack hygroreceptors for sensing skin wetness. Yet, the molecular basis of human hygrosensation is currently unknown, and it remains unclear whether we possess a receptor-mediated sensing mechanism for skin wetness. The aim of this study was to assess the role of the cutaneous cold-sensitive transient receptor potential melastatin-8 (TRPM8) channel as a molecular mediator of human hygrosensation. To this end, we exploited both the thermal and chemical activation of TRPM8-expressing cutaneous Aδ cold thermoreceptors, and we assessed wetness sensing in healthy young men in response to 1) dry skin cooling in the TRPM8 range of thermosensitivity and 2) application of the TRPM8 agonist menthol. Our results indicate that 1) independently of contact with moisture, a cold-dry stimulus in the TRPM8 range of activation induced wetness perceptions across 12 different body regions and those wetness perceptions varied across the body following regional differences in cold sensitivity; and 2) independently of skin cooling, menthol-induced stimulation of TRPM8 triggered wetness perceptions that were greater than those induced by physical dry cooling and by contact with an aqueous cream containing actual moisture. For the first time, we show that the cutaneous cold-sensing TRPM8 channel plays the dual role of cold and wetness sensor in human skin and that this ion channel is a peripheral mediator of human skin wetness perception.


Medicina ◽  
2018 ◽  
Vol 54 (4) ◽  
pp. 61 ◽  
Author(s):  
Agnieszka Chrustek ◽  
Iga Hołyńska-Iwan ◽  
Inga Dziembowska ◽  
Joanna Bogusiewicz ◽  
Marcin Wróblewski ◽  
...  

Pyrethroids are synthetic derivatives of natural pyrethrins extracted from Chrysanthemum cinerariaefolium. They are 2250 times more toxic to insects than to vertebrates due to insects’ smaller size, lower body temperature and more sensitive sodium channels. In particular, three pyrethroid compounds, namely deltamethrin, permethrin, and alpha-cypermethrin, are commonly used as insecticides and are recommended for in-home insect control because they are considered to be relatively non-toxic to humans in all stages of life. However, recent data show that they are not completely harmless to human health as they may enter the body through skin contact, by inhalation and food or water, and absorption level depending on the type of food. Permethrin seems to have an adverse effect on fertility, the immune system, cardiovascular and hepatic metabolism as well as enzymatic activity. Deltamethrin induces inflammation, nephro- and hepatotoxicity and influences the activity of antioxidant enzymes in tissues. Alpha-cypermethrin may impair immunity and act to increase glucose and lipid levels in blood. The aim of the review is to provide comprehensive information on potential hazards associated to human exposure to deltamethrin, permethrin and alpha-cypermethrin. The results of presented studies prove that the insecticides must be used with great caution.


Sign in / Sign up

Export Citation Format

Share Document