scholarly journals The Use of Natural Products of Epigenetic Modulators in Anti-Cancer Drug Studies

Proceedings ◽  
2019 ◽  
Vol 40 (1) ◽  
pp. 41
Author(s):  
Demokan

The natural products obtained from plants, bacteria, fungi and marine have been used in the treatment of human diseases throughout the centuries. These compounds of them also interfere with the expression of genes by influencing epigenetic mechanisms. Recent researches showed significant outcomes suggesting that epigenetic silencing of the main regulatory genesis a sign of cancer onset and its progression. Epigenetic mechanisms that regulate expression of genes without mutation in the DNA are carried through DNA methylation, histone modification, chromatin remodeling and RNA interference. DNA methylation observed in the promoter regions of genes and prevents binding of the transcription factors by suppressing gene expression or by altering the nucleosome package of DNA, and may also directly inhibit transcription. Plant based products, such as curcumin, flavonoids, genistein, have been shown to exhibit cytostatic and apoptotic activities by influencing DNA methylation-based gene expression regulation in tumor cells. Additionally, natural products such as sulforaphane, retinoic acid, cucurbitacin B, casein Q, parthenolide, folate, cobalamin, pyridoxine and methionine also are used as anti-cancer agents based on DNA methylation. On the other hand, microRNAs (miRNAs) play a particular role in the epigenetic regulation of gene expression in post-transcription and post-translation processes. Quercetin, tryptolide, and honokiol are the natural compounds used in miRNA based agents. Histone modifications, which also affect the chromatin structure, play an important role in the initiation and progression of carcinogenesis as well as regulation of gene expression. As expected particular inhibitors of histone acetyltransferases (HATs) and histone deacetylase (HDAC) enzymes which are responsible of histone modifications have been developed for epigenetic intervention in cancer treatment. Numerous natural compounds are known to affect histone-modifying enzymes; such as romidepsin, epigallocatechingallate (EGCG), daidzein, sulphorafane, glucoraphanin, parthenolide, triptolide, sinapinic acid. Natural epigenetic modulators developed for epigenetic mechanisms enable the destruction of apoptotic, necrotic or autophagic pathways of tumor cells. Beside epigenetic mechanisms, these products exert their effects through influencing the cell cycle, DNA repair, and epigenetic mechanisms which modulate gene expression. More extensive in vitro and in vivo studies are required to investigate the effect of natural product-based epigenetic agents which seems to be very promising for future cancer treatment approaches.

2016 ◽  
Vol 57 (6) ◽  
pp. 646-654 ◽  
Author(s):  
Suvendu Mondal ◽  
Young Sam Go ◽  
Seung Sik Lee ◽  
Byung Yeoup Chung ◽  
Jin-Hong Kim

Abstract Dynamic histone modifications play an important role in controlling gene expression in response to various environmental cues. This mechanism of regulation of gene expression is important for sessile organisms, like land plants. We have previously reported consistent upregulation of various marker genes in response to gamma rays at various post-irradiation times. In the present study, we performed various chromatin modification analyses at selected loci using the standard chromatin immunoprecipitation procedure, and demonstrate that upregulation of these genes is associated with histone H3 lysine 4 tri-methylation (H3K4me3) at the gene body or transcription start sites of these loci. Further, at specific AtAgo2 loci, both H3K4me3 and histone H3 lysine 9 acetylation (H3K9ac) are important in controlling gene expression in response to gamma irradiation. There was no change in DNA methylation in these selected loci. We conclude that specific histone modification such as H3K4me3 and H3K9ac may be more important in activating gene expression in these selected loci in response to gamma irradiation than a change in DNA methylation.


2010 ◽  
Vol 48 ◽  
pp. 165-185 ◽  
Author(s):  
Asli Silahtaroglu ◽  
Jan Stenvang

Epigenetics is defined as the heritable chances that affect gene expression without changing the DNA sequence. Epigenetic regulation of gene expression can be through different mechanisms such as DNA methylation, histone modifications and nucleosome positioning. MicroRNAs are short RNA molecules which do not code for a protein but have a role in post-transcriptional silencing of multiple target genes by binding to their 3′ UTRs (untranslated regions). Both epigenetic mechanisms, such as DNA methylation and histone modifications, and the microRNAs are crucial for normal differentiation, development and maintenance of tissue-specific gene expression. These mechanisms also explain how cells with the same DNA content can differentiate into cells with different functions. Changes in epigenetic processes can lead to changes in gene function, cancer formation and progression, as well as other diseases. In the present chapter we will mainly focus on microRNAs and methylation and their implications in human disease, mainly in cancer.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Paula Suarez-Bregua ◽  
Sofia Rosendo ◽  
Pilar Comesaña ◽  
Lucia Sánchez-Ruiloba ◽  
Paloma Morán ◽  
...  

Abstract Introduction Most living marine organisms have a biphasic life cycle dependent on metamorphosis and settlement. These critical life-history events mean that a developmentally competent larva undergoes a range of coordinated morphological and physiological changes that are in synchrony with the ecological transition from a pelagic to a benthonic lifestyle. Therefore, transition from a pelagic to a benthonic habitat requires multiple adaptations, however, the underlying mechanisms regulating this process still remains unclear. Epigenetic regulation and specifically DNA methylation, has been suggested to be particularly important for organisms to adapt to new environments. Seahorses (Family Syngnathidae, Genus Hippocampus) are a fascinating group of fish, distinguished by their unique anatomical features, reproductive strategy and behavior. They are unique among vertebrate species due to their “male pregnancy”, where males nourish developing embryos and larvae in a brood pouch until hatching and parturition occurs. After birth, free-swimming offspring are pelagic and subsequently they change into a demersal lifestyle. Therefore, to begin to address the question whether epigenetic processes could be involved in the transition from a planktonic to a benthonic lifestyle observed in seahorses, we studied global DNA methylation profiles in a tropical seahorse species (Hippocampus reidi) during postnatal development and settlement. Results We performed methylation-sensitive amplified polymorphism (MSAP) along with quantitative expression analysis for genes suggested to be involved in the methylation machinery at six age groups: 1, 5, 10, 20, 30 and 40 days after male’s pouch release (DAR). Results revealed that the H. reidi genome has a significantly different DNA methylation profile during postnatal development and settlement on demersal habitats. Moreover, gene expression analysis showed up- and down-regulation of specific DNA methyltransferases (DNMTs) encoding genes. Conclusion Our data show that the differences in the DNA methylation patterns seen among developmental stages and during the transition from a pelagic to a benthonic lifestyle suggest a potential for epigenetic regulation of gene expression (through DNA methylation) in this species. Therefore, epigenetic mechanisms could be necessary for seahorse settlement. Nevertheless, if these epigenetic mechanisms come from internal or if they are initiated via external environmental cues should be further investigated.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Paula Quintero-Ronderos ◽  
Gladis Montoya-Ortiz

Epigenetics is defined as the study of all inheritable and potentially reversible changes in genome function that do not alter the nucleotide sequence within the DNA. Epigenetic mechanisms such as DNA methylation, histone modification, nucleosome positioning, and microRNAs (miRNAs) are essential to carry out key functions in the regulation of gene expression. Therefore, the epigenetic mechanisms are a window to understanding the possible mechanisms involved in the pathogenesis of complex diseases such as autoimmune diseases. It is noteworthy that autoimmune diseases do not have the same epidemiology, pathology, or symptoms but do have a common origin that can be explained by the sharing of immunogenetic mechanisms. Currently, epigenetic research is looking for disruption in one or more epigenetic mechanisms to provide new insights into autoimmune diseases. The identification of cell-specific targets of epigenetic deregulation will serve us as clinical markers for diagnosis, disease progression, and therapy approaches.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jonathan D. Licht ◽  
Richard L. Bennett

Abstract Background Epigenetic mechanisms regulate chromatin accessibility patterns that govern interaction of transcription machinery with genes and their cis-regulatory elements. Mutations that affect epigenetic mechanisms are common in cancer. Because epigenetic modifications are reversible many anticancer strategies targeting these mechanisms are currently under development and in clinical trials. Main body Here we review evidence suggesting that epigenetic therapeutics can deactivate immunosuppressive gene expression or reprogram tumor cells to activate antigen presentation mechanisms. In addition, the dysregulation of epigenetic mechanisms commonly observed in cancer may alter the immunogenicity of tumor cells and effectiveness of immunotherapies. Conclusions Therapeutics targeting epigenetic mechanisms may be helpful to counter immune evasion and improve the effectiveness of immunotherapies.


The Nucleus ◽  
2021 ◽  
Author(s):  
Gaurab Aditya Dhar ◽  
Shagnik Saha ◽  
Parama Mitra ◽  
Ronita Nag Chaudhuri

2018 ◽  
Vol 115 (48) ◽  
pp. E11321-E11330 ◽  
Author(s):  
Jie Hou ◽  
Xiaowen Shi ◽  
Chen Chen ◽  
Md. Soliman Islam ◽  
Adam F. Johnson ◽  
...  

Changes in dosage of part of the genome (aneuploidy) have long been known to produce much more severe phenotypic consequences than changes in the number of whole genomes (ploidy). To examine the basis of these differences, global gene expression in mature leaf tissue for all five trisomies and in diploids, triploids, and tetraploids of Arabidopsis thaliana was studied. The trisomies displayed a greater spread of expression modulation than the ploidy series. In general, expression of genes on the varied chromosome ranged from compensation to dosage effect, whereas genes from the remainder of the genome ranged from no effect to reduced expression approaching the inverse level of chromosomal imbalance (2/3). Genome-wide DNA methylation was examined in each genotype and found to shift most prominently with trisomy 4 but otherwise exhibited little change, indicating that genetic imbalance is generally mechanistically unrelated to DNA methylation. Independent analysis of gene functional classes demonstrated that ribosomal, proteasomal, and gene body methylated genes were less modulated compared with all classes of genes, whereas transcription factors, signal transduction components, and organelle-targeted protein genes were more tightly inversely affected. Comparing transcription factors and their targets in the trisomies and in expression networks revealed considerable discordance, illustrating that altered regulatory stoichiometry is a major contributor to genetic imbalance. Reanalysis of published data on gene expression in disomic yeast and trisomic mouse cells detected similar stoichiometric effects across broad phylogenetic taxa, and indicated that these effects reflect normal gene regulatory processes.


2018 ◽  
Vol 4 (11) ◽  
pp. eaau6986 ◽  
Author(s):  
Lu Wang ◽  
Patrick A. Ozark ◽  
Edwin R. Smith ◽  
Zibo Zhao ◽  
Stacy A. Marshall ◽  
...  

The tet methylcytosine dioxygenase 2 (TET2) enzyme catalyzes the conversion of the modified DNA base 5-methylcytosine to 5-hydroxymethylcytosine. TET2 is frequently mutated or dysregulated in multiple human cancers, and loss of TET2 is associated with changes in DNA methylation patterns. Here, using newly developed TET2-specific antibodies and the estrogen response as a model system for studying the regulation of gene expression, we demonstrate that endogenous TET2 occupies active enhancers and facilitates the proper recruitment of estrogen receptor α (ERα). Knockout of TET2 by CRISPR-CAS9 leads to a global increase of DNA methylation at enhancers, resulting in attenuation of the estrogen response. We further identified a positive feedback loop between TET2 and ERα, which further requires MLL3 COMPASS at these enhancers. Together, this study reveals an epigenetic axis coordinating a transcriptional program through enhancer activation via DNA demethylation.


2016 ◽  
Vol 311 (6) ◽  
pp. L1245-L1258 ◽  
Author(s):  
Isaac K. Sundar ◽  
Irfan Rahman

Chromatin-modifying enzymes mediate DNA methylation and histone modifications on recruitment to specific target gene loci in response to various stimuli. The key enzymes that regulate chromatin accessibility for maintenance of modifications in DNA and histones, and for modulation of gene expression patterns in response to cigarette smoke (CS), are not known. We hypothesize that CS exposure alters the gene expression patterns of chromatin-modifying enzymes, which then affects multiple downstream pathways involved in the response to CS. We have, therefore, analyzed chromatin-modifying enzyme profiles and validated by quantitative real-time PCR (qPCR). We also performed immunoblot analysis of targeted histone marks in C57BL/6J mice exposed to acute and subchronic CS, and of lungs from nonsmokers, smokers, and patients with chronic obstructive pulmonary disease (COPD). We found a significant increase in expression of several chromatin modification enzymes, including DNA methyltransferases, histone acetyltransferases, histone methyltransferases, and SET domain proteins, histone kinases, and ubiquitinases. Our qPCR validation data revealed a significant downregulation of Dnmt1, Dnmt3a, Dnmt3b, Hdac2, Hdac4, Hat1, Prmt1, and Aurkb. We identified targeted chromatin histone marks (H3K56ac and H4K12ac), which are induced by CS. Thus CS-induced genotoxic stress differentially affects the expression of epigenetic modulators that regulate transcription of target genes via DNA methylation and site-specific histone modifications. This may have implications in devising epigenetic-based therapies for COPD and lung cancer.


Sign in / Sign up

Export Citation Format

Share Document