scholarly journals Development of Customised Wheelchair Racing Gloves Using Digital Fabrication Techniques

Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 44
Author(s):  
Derek Covill ◽  
Rob King ◽  
Joe Townsend ◽  
Gary Brickley ◽  
Jean-Marc Drouet

Wheelchair racing gloves are typically solid 3D structures held in a clenched fist which help to propel the chair by pushing the glove against a rotating rail which is attached to the wheel to drive the wheelchair forward. There has been a recent movement towards developing customisable gloves using 3D scanning technique, however, currently there are no commercial offerings which allow for product customisation without being prohibitively expensive. The aim of this project, therefore, was to develop a scalable method for producing customised wheelchair racing gloves in a cost-effective way. The generated 3D forms were 3D printed in a variety of infill densities and finished with a grip liner. These 3D printed gloves were compared in terms of fit and perception of performance, and for their mass, cost and energy/power cost. The 3D printed gloves provided a substantially reduced mass with only a minimal reduction in overall strength at a comparable cost to the solid equivalent.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haoran Wang ◽  
Anton Enders ◽  
John-Alexander Preuss ◽  
Janina Bahnemann ◽  
Alexander Heisterkamp ◽  
...  

Abstract3D printing of microfluidic lab-on-a-chip devices enables rapid prototyping of robust and complex structures. In this work, we designed and fabricated a 3D printed lab-on-a-chip device for fiber-based dual beam optical manipulation. The final 3D printed chip offers three key features, such as (1) an optimized fiber channel design for precise alignment of optical fibers, (2) an optically clear window to visualize the trapping region, and (3) a sample channel which facilitates hydrodynamic focusing of samples. A square zig–zag structure incorporated in the sample channel increases the number of particles at the trapping site and focuses the cells and particles during experiments when operating the chip at low Reynolds number. To evaluate the performance of the device for optical manipulation, we implemented on-chip, fiber-based optical trapping of different-sized microscopic particles and performed trap stiffness measurements. In addition, optical stretching of MCF-7 cells was successfully accomplished for the purpose of studying the effects of a cytochalasin metabolite, pyrichalasin H, on cell elasticity. We observed distinct changes in the deformability of single cells treated with pyrichalasin H compared to untreated cells. These results demonstrate that 3D printed microfluidic lab-on-a-chip devices offer a cost-effective and customizable platform for applications in optical manipulation.


The Analyst ◽  
2021 ◽  
Author(s):  
Diwakar M. Awate ◽  
Cicero C. Pola ◽  
Erica Shumaker ◽  
Carmen L Gomes ◽  
Jaime Javier Juarez

Despite having widespread application in the biomedical sciences, flow cytometers have several limitations that prevent their application to point-of-care (POC) diagnostics in resource-limited environments. 3D printing provides a cost-effective approach...


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3234
Author(s):  
Wangwang Yu ◽  
Lili Dong ◽  
Wen Lei ◽  
Yuhan Zhou ◽  
Yongzhe Pu ◽  
...  

To develop a new kind of environment-friendly composite filament for fused deposition modeling (FDM) 3D printing, rice straw powder (RSP)/poly(lactic acid) (PLA) biocomposites were FDM-3D-printed, and the effects of the particle size and pretreatment of RSP on the properties of RSP/PLA biocomposites were investigated. The results indicated that the 120-mesh RSP/PLA biocomposites (named 120#RSP/PLA) showed better performance than RSP/PLA biocomposites prepared with other RSP sizes. Infrared results showed that pretreatment of RSP by different methods was successful, and scanning electron microscopy indicated that composites prepared after pretreatment exhibited good interfacial compatibility due to a preferable binding force between fiber and matrix. When RSP was synergistically pretreated by alkaline and ultrasound, the composite exhibited a high tensile strength, tensile modulus, flexural strength, and flexural modulus of 58.59, 568.68, 90.32, and 3218.12 MPa, respectively, reflecting an increase of 31.19%, 16.48%, 18.75%, and 25.27%, respectively, compared with unmodified 120#RSP/PLA. Pretreatment of RSP also improved the thermal stability and hydrophobic properties, while reducing the water absorption of 120#RSP/PLA. This work is believed to provide highlights of the development of cost-effective biocomposite filaments and improvement of the properties of FDM parts.


2021 ◽  
Author(s):  
Serhat Sevli ◽  
not provided C. Yunus Sahan

Microfluidics materials are of various types and application-specific. PDMS is one of the most preferred and cost-effective solutions for research and low-volume manufacturing. After having the mold, PDMS replicas are generated by a technique called soft-lithography. This protocol describes the preparation of PDMS microchannels using SU8 molds, 3D Printed resin molds, and/or metal molds by the soft lithography technique, SLA printing, or CNC machining.


Author(s):  
Claudia Flores-Saviaga ◽  
Ricardo Granados ◽  
Liliana Savage ◽  
Lizbeth Escobedo ◽  
Saiph Savage

Crowdsourced content creation like articles or slogans can be powered by crowds of volunteers or workers from paid task markets. Volunteers often have expertise and are intrinsically motivated, but are a limited resource, and are not always reliably available. On the other hand, paid crowd workers are reliably available, can be guided to produce high-quality content, but cost money. How can these different populations of crowd workers be leveraged together to power cost-effective yet high-quality crowd-powered content-creation systems? To answer this question, we need to understand the strengths and weaknesses of each. We conducted an online study where we hired paid crowd workers and recruited volunteers from social media to complete three content creation tasks for three real-world non-profit organizations that focus on empowering women. These tasks ranged in complexity from simply generating keywords or slogans to creating a draft biographical article. Our results show that paid crowds completed work and structured content following editorial guidelines more effectively. However, volunteer crowds provide content that is more original. Based on the findings, we suggest that crowd-powered content-creation systems could gain the best of both worlds by leveraging volunteers to scaffold the direction that original content should take; while having paid crowd workers structure content and prepare it for real world use.


2021 ◽  
Author(s):  
Serhat Sevli ◽  
not provided C. Yunus Sahan

Microfluidics materials are of various types and application-specific. PDMS is one of the most preferred and cost-effective solutions for research and low-volume manufacturing. After having the mold, PDMS replicas are generated by a technique called soft-lithography. This protocol describes the preparation of PDMS microchannels using SU8 molds, 3D Printed resin molds, and/or metal molds by the soft lithography technique, SLA printing, or CNC machining.


2020 ◽  
Author(s):  
Phuong Thao Ly ◽  
John D. Thompson ◽  
Sharyn A. Endow

Abstract Drosophila first instar (L1) larval brains (LBs) contain frequent quiescent neural stem cells (qNSCs) as well as activated neuroblasts, making them favorable for studying stem cell quiescence and activation. However, the small size of LBs at the L1 stage necessitates the use of modified methods to prepare the LBs for immunofluorescence microscopy (IFM). The protocol described here allows efficient collection of embryos and maturation of larvae to the mid-L1 stage, followed by dissection, fixation and processing of LBs through the antibody staining steps for IFM. The entire procedure can be completed in ~3-5 days. Methods are also described for use in preparing L1 brains for live imaging experiments, including a file to create accessible and cost-effective 3D printed slides that can be fit with an O2-permeable membrane for live imaging.


Author(s):  
Emmanuelle R. Biglete ◽  
Jennifer C. Dela Cruz ◽  
Marvin S. Verdadero ◽  
Mark Christian E. Manuel ◽  
Allison R. Altea ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document