scholarly journals Unreported leaks location using pressure and flow sensitivity in water distribution networks

2018 ◽  
Vol 19 (1) ◽  
pp. 11-18 ◽  
Author(s):  
F. J. Salguero ◽  
R. Cobacho ◽  
M. A. Pardo

Abstract Water distribution systems are made up of many interdependent elements that enable water supply to meet a demand that is variable in time and space. One of the main concerns for utility managers is quickly locating and repairing a leak after detection, during regular network water balance. This paper presents a two-stage methodology for locating a leak that is based on the hydraulic model of the network, and, particularly, on the conservation equations that govern network behaviour. In the first stage, the sensitivity of each element (nodes and pipes) is obtained for a given demand increase in any node. In the second stage, that sensitivity is combined with additional real data provided by the (possibly) existing pressure sensors and flowmeters installed throughout the network. As a final result, the system of equations thus obtained produces the theoretical leak flow at each network node that matches the network conditions. A subsequent analysis of the leak flows obtained highlights the node or nodes in which the leak is occurring. The presented methodology is applied and assessed in a case study.


Proceedings ◽  
2018 ◽  
Vol 2 (11) ◽  
pp. 672 ◽  
Author(s):  
Attilio Fiorini Morosini ◽  
Olga Caruso ◽  
Paolo Veltri

The correct management of Water Distribution Networks (WDNs) allows to obtain a reliable system. When a pipe failure occurs in a network and it is necessary to isolate a zone, it is possible that some nodes do not guarantee service for the users due to inadequate heads. In these conditions a Pressure Driven Analysis (PDA) is the correct approach to evaluate network behavior. This analysis is more appropriate than the Demand Driven Analysis (DDA) because it is known that the effective delivered flow at each node is influenced by the pressure value. In this case, it is important to identify a subset of isolation valves to limit disrupting services in the network. For a real network, additional valves must be added to existing ones. In this paper a new methodological analysis is proposed: it defines an objective function (OF) to provide a measure of the system correct functioning. The network analysis using the OF helps to choose the optimal number of additional valves to obtain an adequate system control. In emergency conditions, the OF takes into account the new network topology obtained excluding the zone where the broken pipe is located. OF values depend on the demand deficit caused by the head decrement in the network nodes for each pipe burst considered. The results obtained for a case study confirm the efficiency of the methodology.



Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 493 ◽  
Author(s):  
Jorge Francés-Chust ◽  
Bruno M. Brentan ◽  
Silvia Carpitella ◽  
Joaquín Izquierdo ◽  
Idel Montalvo

Nowadays, optimal sensor placement (OSP) for leakage detection in water distribution networks is a lively field of research, and a challenge for water utilities in terms of network control, management, and maintenance. How many sensors to install and where to install them are crucial decisions to make for those utilities to reach a trade-off between efficiency and economy. In this paper, we address the where-to-install-them part of the OSP through the following elements: nodes’ sensitivity to leakage, uncertainty of information, and redundancy through conditional entropy maximisation. We evaluate relationships among candidate sensors in a network to get a picture of the mutual influence among the nodes. This analysis is performed within a multi-criteria decision-making approach: specifically, a herein proposed variant of DEMATEL, which uses fuzzy logic and builds comparison matrices derived from information obtained through leakage simulations of the network. We apply the proposal first to a toy example to show how the approach works, and then to a real-world case study.



2010 ◽  
Vol 3 (1) ◽  
pp. 21-27 ◽  
Author(s):  
J. Machell ◽  
S. R. Mounce ◽  
J. B. Boxall

Abstract. Hydraulic simulation models of water distribution networks are routinely used for operational investigations and network design purposes. However, their full potential is often never realised because, in the majority of cases, they have been calibrated with data collected manually from the field during a single historic time period and, as such, reflect the network operational conditions that were prevalent at that time, and they are then applied as part of a reactive, desktop investigation. In order to use a hydraulic model to assist proactive distribution network management its element asset information must be up to date and it should be able to access current network information to drive simulations. Historically this advance has been restricted by the high cost of collecting and transferring the necessary field measurements. However, recent innovation and cost reductions associated with data transfer is resulting in collection of data from increasing numbers of sensors in water supply systems, and automatic transfer of the data to point of use. This means engineers potentially have access to a constant stream of current network data that enables a new era of "on-line" modelling that can be used to continually assess standards of service compliance for pressure and reduce the impact of network events, such as mains bursts, on customers. A case study is presented here that shows how an online modelling system can give timely warning of changes from normal network operation, providing capacity to minimise customer impact.



2010 ◽  
Vol 107 ◽  
pp. 87-92 ◽  
Author(s):  
José Pérez García ◽  
Antonio Cortés Marco ◽  
Simón Nevado Santos

The main pipes in water distribution systems have, in many cases, an excess of static pressure. This excess of pressure is usually dissipated by means of intermediate reservoirs, pressure-reducing valves or any other device that produces the required energy loss with the aim to adjust the pressure level to the demand pattern of the system. This hydraulic energy can be used to directly drive a mechanical system or to generate electric power. In this type of recovery energy systems, the available hydraulic power is lower than 100 kW (micro-hydro). In this range, the utilization of conventional hydraulic turbines is not economically viable in short-medium time. In micro-hydropower applications the use of standard centrifugal pumps operated in reverse mode as hydraulic turbines (PAT) can be competitive. In this work, several prediction methods and algorithms suggested by different authors were analyzed and compared. Two case study, in the water system distribution of Murcia and Elche are also presented.



2019 ◽  
Vol 21 (6) ◽  
pp. 1030-1047 ◽  
Author(s):  
Fattah Soroush ◽  
Mohammad J. Abedini

Abstract This paper presents a novel methodology for designing an optimal pressure sensor to make average pressure field in water distribution systems (WDS) more accurate via geostatistical tools coupled with genetic algorithm (GA) under normal operating condition. In light of this, the objective function is introduced based on geostatistical technique as variance of residual of block ordinary kriging (BOK). In order to solve the problem of sensor placement, three different approaches, so-called, simplified, exhaustive, and random search optimization are considered. To the best of the authors' knowledge, this is the first time whereby geostatistical tools are used to design a pressure monitoring network in the WDS. The proposed methodology is first tested and verified on a literature case study of Anytown WDS and then is applied to a real-world case study referred to as C-Town consisting of five district metered areas (DMAs). The proposed methodology has several advantages over existing more conventional approaches which will be demonstrated in this paper. The results indicate that this method outperforms the conventional paradigms in current use in terms of mathematical labor and the results are quite promising.



2017 ◽  
Vol 18 (3) ◽  
pp. 778-789 ◽  
Author(s):  
S. Parra ◽  
S. Krause ◽  
F. Krönlein ◽  
F. W. Günthert ◽  
T. Klunke

Abstract Pressure reducing valves (PRVs) are used in water distribution networks (WDNs) for pressure control and water loss reduction. In this study, a system composed of a PRV and a pump as turbine (PAT) in combination with intelligent pressure management is proposed and its performance is analysed experimentally. For this, data analysis using hydraulic modelling and extensive experimentation for a case study in Germany was performed. During the laboratory tests, the pressure at the critical point of the system could be successfully maintained at the selected value at variable discharges during a characteristic day, as a result of the advanced pressure modulation. Additionally, up to 2.3 kW of electrical energy were recovered, when the applied PAT was operating under full load, with a maximum total net system efficiency of 40%. Furthermore, the proposed pressure management was found to increase the water savings by up to 16% compared to conventional PRVs. This study concludes that the PAT-PRV-system may be suitable in WDNs with high differences in altitude, high operational pressures and high demand variability. For its application, the benefits and the investment costs, as well as the seasonal flow and pressure variations in the WDN should be analysed in detail.



2009 ◽  
Vol 2 (2) ◽  
pp. 279-294 ◽  
Author(s):  
J. Machell ◽  
S. R. Mounce ◽  
J. B. Boxall

Abstract. Hydraulic simulation models of water distribution networks are routinely used for operational investigations and network design purposes. However, their full potential is often never realised because, in the majority of cases, they have been calibrated with data collected manually from the field during a single historic time period and, as such, reflect the network operational conditions that were prevalent at that time, and they are then applied as part of a reactive, desktop investigation. In order to use a hydraulic model to assist proactive distribution network management its element asset information must be up to date and it should be able to access current network information to drive simulations. Historically this advance has been restricted by the high cost of collecting and transferring the necessary field measurements. However, recent innovation and cost reductions associated with data transfer is resulting in collection of data from increasing numbers of sensors in water supply systems, and automatic transfer of the data to point of use. This means engineers potentially have access to a constant stream of current network data that enables a new era of "online" modelling that can be used to continually assess standards of service compliance for pressure and reduce the impact of network events, such as mains bursts, on customers. A case study is presented here that shows how an online modelling system can give timely warning of changes from normal network operation, providing capacity to minimise customer impact.



Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2235
Author(s):  
Bruno Ferreira ◽  
Nelson Carriço ◽  
Dídia Covas

This article proposes a novel methodology to determine the optimal number of pressure sensors for the real-time monitoring of water distribution networks based on a quality hypervolume indicator. The proposed methodology solves the optimization problem for different numbers of pressure sensors, assesses the gain of installing each set of sensors by means of the hypervolume indicator and determines the optimal number of sensors by the variation of the hypervolume indicator. The methodology was applied to a real case study. Several robustness analyses were carried out. The results demonstrate that the methodology is hardly influenced by the method parameters and that a reasonable estimation of the optimal number of sensors can be easily achieved.



Author(s):  
Jesús Rubén Sánchez-Navarro ◽  
David H. Sánchez ◽  
Carmen J. Navarro-Gómez ◽  
Eduardo Herrera Peraza

Abstract In intermittent drinking water distribution systems, large volumes of the water are wasted due to leaks in the distribution networks. Similarly, user service is not always satisfied in the time required to fill the storage, nor with sufficient pressure. Hence the importance of this study. Measuring the variability of pressure in the distribution network and determining the factors that influence the definition of a sufficient minimum hours of service, is a first step to change to a continuous service 24/7, in order to minimize the volumes of lost water and meet demand. 347 pressure sensors were placed in a network to detect changes in pressure and obtain data for three years. This study presents a new approach to determine the operating policy of the operating agency that provides the service intermittently. Two objectives are pursued: pressure variability – to minimize Leaks – and define the minimum hours of service. The analysis was performed using multivariate statistical techniques, including Principal Component Analysis, Correlation Matrix and ANOVA's, to explore the association between objectives. The results obtained show that the pressure distribution has a Gaussian behavior and that the hours of service has a Poisson distribution.



Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 131
Author(s):  
Jezabel D. Bianchotti ◽  
Melina Denardi ◽  
Mario Castro-Gama ◽  
Gabriel D. Puccini

Sectorization is an effective technique for reducing the complexities of analyzing and managing of water systems. The resulting sectors, called district metering areas (DMAs), are expected to meet some requirements and performance criteria such as minimum number of intervention, pressure uniformity, similarity of demands, water quality and number of districts. An efficient methodology to achieve all these requirements together and the proper choice of a criteria governing the sectorization is one of the open questions about optimal DMAs design. This question is addressed in this research by highlighting the advantages of three different criteria when applied to real-word water distribution networks (WDNs). To this, here it is presented a two-stage approach for optimal design of DMAs. The first stage, the clustering of the system, is based on a Louvain-type greedy algorithm for the generalized modularity maximization. The second stage, the physical dividing of the system, is stated as a two-objective optimization problem that utilises the SMOSA version of simulated annealing for multiobjective problems. One objective is the number of isolation valves whereas for the second objective three different performance indices (PIs) are analyzed and compared: (a) standard deviation, (b) Gini coefficient and (c) loss of resilience. The methodology is applied to two real case studies where the first two PIs are optimized to address similar demands among DMAs. The results demonstrate that the proposed method is effective for sectorization into independent DMAs with similar demands. Surprisingly, it found that for the real studied systems, loss of resilience achieves better performance for each district in terms of pressure uniformity and demand similarity than the other two specific performance criteria.



Sign in / Sign up

Export Citation Format

Share Document