scholarly journals Low-Offset In-Plane Sensitive Hall Arrangement

Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 713
Author(s):  
Siya Lozanova ◽  
Ivan Kolev ◽  
Avgust Ivanov ◽  
Chavdar Roumenin

A novel in-plane sensitive Hall arrangement consisting of two identical n-Si three-contact (3C) elements and realized in a common technological process, is presented. In the solution, the minimization of the offset and its temperature drift is achieved by cross-coupling of the outer device contacts. This terminals’ connection provides equalizing currents between the two substrates which strongly compensate the inevitable difference in the electrical conditions in the two parts of the arrangement. As a result, the residual offset of both integrated Hall elements at the output Vout(0) and its temperature drift are strongly minimized. The residual offset is about 160 times smaller than the single-configuration one. The obtained output voltage-to-residual offset ratio at sensitivity of SRI ≈ 98 V/AT is very promising, reaching 6 × 103 at temperature T = 40 °C and induction 1 T. As a result, increased metrological accuracy for numerous applications is achieved. For a first time through the novel arrangement a suppression of sensitivity in the presence of external magnetic field could be achieved in order to obtain permanent offset information. This is one of the key results in the Hall device investigation.

2016 ◽  
Vol 7 ◽  
pp. 990-994 ◽  
Author(s):  
Xiaoyu Li ◽  
Lijuan Sun ◽  
Hu Wang ◽  
Kenan Xie ◽  
Qin Long ◽  
...  

In contrast to the majority of related experiments, which are carried out in organic solvents at high temperatures and pressures, cobalt nanowires were synthesized by chemical reduction in aqueous solution with the assistance of polyvinylpyrrolidone (PVP) as surfactant under moderate conditions for the first time, while an external magnetic field of 40 mT was applied. Uniform linear cobalt nanowires with relatively smooth surfaces and firm structure were obtained and possessed an average diameter of about 100 nm with a coating layer of PVP. By comparison, the external magnetic field and PVP were proven to have a crucial influence on the morphology and the size of the synthesized cobalt nanowires. The prepared cobalt nanowires are crystalline and mainly consist of cobalt as well as a small amount of platinum. Magnetic measurements showed that the resultant cobalt nanowires were ferromagnetic at room temperature. The saturation magnetization (M s) and the coercivity (H c) were 112.00 emu/g and 352.87 Oe, respectively.


2014 ◽  
Vol 905 ◽  
pp. 61-64
Author(s):  
Wei Yao ◽  
Yun Lu

The novel magnetic nanocomposites have been prepared by simultaneous forming of Fe3O4 nanospheres and graphene sheets in an anchoring mode and polymerizing of pyrrole on the Fe3O4 surface. TEM, XRD and XPS were used to characterize the as-prepared products. Nanocomposites exhibit excellent adsorption capability of 348.4 mg g-1 for heavy metal Cr (VI) ions, and moreover, are stable, separable easily under external magnetic field and recyclable, retaining about 83.1% of the removal efficiency after four adsorption-desorption cycles. The adsorption isotherm has been studied and shows a good consistency with the Langmuir mode. The nanocomposites could be a good candidate for efficient removal of Cr (VI) from the wastewater.


Author(s):  
Seung-Yeon Kim

<p>A ferromagnetic material in the absence of an external magnetic field shows the peak of its specific heat in low temperature, called the Schottky anomaly, which is vital in understanding the low-energy structure of a given material. A general formula for the low-temperature behavior of the specific heat of an N-spin ferromagnetic material in an external magnetic field (the generalized Schottky anomaly) is obtained for the first time. Also, as a representative example of ferromagnetic materials in an external magnetic field, the low-temperature behavior of the specific heat for the Ising ferromagnet is studied.</p>


2016 ◽  
Vol 30 (34) ◽  
pp. 1650405
Author(s):  
Alexander V. Zhukov ◽  
Roland Bouffanais ◽  
Mikhail B. Belonenko ◽  
Elena N. Galkina

In this paper, we study the behavior of three-dimensional extremely-short optical pulses propagating in a system made of carbon nanotubes in the presence of an external magnetic field applied perpendicular both to the nanotube axis and to the direction of propagation of the pulse. The evolution of the electromagnetic field is classically derived on the basis of the Maxwell’s equations. The electronic system of carbon nanotubes is considered in the low-temperature approximation. Our analysis reveals the novel and unique ability of controlling the shape of propagating short optical pulses by tuning the intensity of the applied magnetic field. This effect paves the way for the possible development of innovative applications in optoelectronics.


RSC Advances ◽  
2021 ◽  
Vol 11 (37) ◽  
pp. 22751-22755
Author(s):  
Vahid Khakyzadeh ◽  
Ahmad Reza Moosavi-Zare ◽  
Sahra Sheikhaleslami ◽  
Amir Ehsani ◽  
Salbin Sediqi ◽  
...  

Water was magnetized via an external magnetic field and employed, for the first time, as a solvent in green preparation of 3,4-dihydropyrimidin-2(1H)-ones by the one-pot three-component condensation reaction using boric acid as a catalyst.


2015 ◽  
Vol 6 ◽  
pp. 2123-2128 ◽  
Author(s):  
Xiaoyu Li ◽  
Hu Wang ◽  
Kenan Xie ◽  
Qin Long ◽  
Xuefei Lai ◽  
...  

Nickel nanowires with a mean diameter of about 95 nm and lengths of up to 26 μm were prepared by a chemical reduction method in aqueous solution under an external magnetic field. The self-assembly mechanism was investigated in detail. The results indicate that the self-assembly process of Ni nanowires consists of three stages: nucleation and growth, ordered alignment and self-assembly, and deposition on the surface and gaps between the nickel particles. The self-assembly phenomenon occurs only when nickel particles grow to a size of about 60 nm in the reaction system. This critical size, which is proposed for the first time, is very important to comprehend the self-assembly mechanism of Ni nanowires prepared with an external magnetic field.


2015 ◽  
Vol 30 (24) ◽  
pp. 1550140 ◽  
Author(s):  
A. V. Kuznetsov ◽  
A. A. Okrugin ◽  
A. M. Shitova

Various forms of expressions for the propagators of charged particles in a constant magnetic field that should be used for investigations of electroweak processes in an external uniform magnetic fields are discussed. Formulas for the propagators of the Standard Model charged [Formula: see text]- and scalar [Formula: see text]-bosons in an arbitrary [Formula: see text]-gauge, expanded over Landau levels, are derived for the first time.


Catalysts ◽  
2018 ◽  
Vol 8 (2) ◽  
pp. 69 ◽  
Author(s):  
Ana Ribeiro ◽  
Inês Matias ◽  
Elisabete Alegria ◽  
Ana Ferraria ◽  
Ana Botelho do Rego ◽  
...  

For the first time, a magnetic C-scorpionate catalyst was prepared from the iron(II) complex [FeCl2{κ3-HC(pz)3}] (pz = pyrazol-1-yl) and ferrite, using the sustainable mechanochemical synthetic procedure. Its catalytic activity for the cyclohexane oxidation with tert-butyl hydroperoxide (TBHP) was evaluated in different conditions, namely under microwave irradiation and under the effect of an external magnetic field. The use of such magnetic conditions significantly shifted the catalyst alcohol/ketone selectivity, thus revealing a promising, easy new protocol for tuning selectivity in important catalytic processes.


2004 ◽  
Vol 18 (01) ◽  
pp. 19-26 ◽  
Author(s):  
A. A. ELISTRATOV ◽  
O. A. BOBRIKOV ◽  
I. L. MAKSIMOV ◽  
V. JEUDY

The problem of the geometrical barrier is solved for the vortex fragment entering from the corners of a superconducting strip, placed into a perpendicular magnetic field. A single-vortex Gibbs potential is constructed for the first time taking into account the actual current/field distribution in a sample of rectangular cross-section. The dependence of the vortex inclination angle as well as the vortex altitude on the external magnetic field is determined. Geometrical barrier-suppression field is found at which near-the-edge vortices start penetrating deep into the strip.


Sign in / Sign up

Export Citation Format

Share Document