scholarly journals A Gradiometric Magnetic Sensor System for Stray-Field-Immune Rotary Position Sensing in Harsh Environment

Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 809 ◽  
Author(s):  
Samuel Huber ◽  
Jan-Willem Burssens ◽  
Nicolas Dupré ◽  
Olivier Dubrulle ◽  
Yves Bidaux ◽  
...  

Contactless magnetic position sensors are used in countless industrial and automotive applications. However, as a consequence of the electrification trend the sensors can be exposed to parasitic magnetic stray fields, and their desired robustness may be compromised. In this paper we publish for the first time how this challenge is addressed and constructively solved using a complete paradigm change leaving conventional magnetic field measurement behind and entering into the realm of magnetic field gradient measurement. Our novel sensor system consists of an integrated Hall sensor realized in 0.18 μm CMOS technology with magnetic concentrators and a four-pole permanent magnet. The intrinsic angular accuracy was assessed comparing the rotary position of the permanent magnet with the sensor output showing angle errors below 0.3°. Additional end-of-line calibration can be applied using built-in memory and processing capability to further increase the accuracy. Finally, we demonstrate the immunity against stray fields of 4000 A/m which led to errors below 0.1°, corresponding to 0.06% of the sensors fullscale angular range. In conclusion, this novel sensor system offers a compact and flexible solution for stray-field immune rotary position measurement in harsh environment.

Author(s):  
D.J. Meyerhoff

Magnetic Resonance Imaging (MRI) observes tissue water in the presence of a magnetic field gradient to study morphological changes such as tissue volume loss and signal hyperintensities in human disease. These changes are mostly non-specific and do not appear to be correlated with the range of severity of a certain disease. In contrast, Magnetic Resonance Spectroscopy (MRS), which measures many different chemicals and tissue metabolites in the millimolar concentration range in the absence of a magnetic field gradient, has been shown to reveal characteristic metabolite patterns which are often correlated with the severity of a disease. In-vivo MRS studies are performed on widely available MRI scanners without any “sample preparation” or invasive procedures and are therefore widely used in clinical research. Hydrogen (H) MRS and MR Spectroscopic Imaging (MRSI, conceptionally a combination of MRI and MRS) measure N-acetylaspartate (a putative marker of neurons), creatine-containing metabolites (involved in energy processes in the cell), choline-containing metabolites (involved in membrane metabolism and, possibly, inflammatory processes),


Author(s):  
Jianqi Li ◽  
Yu Zhou ◽  
Jianying Li

This paper presented a novel analytical method for calculating magnetic field in the slotted air gap of spoke-type permanent-magnet machines using conformal mapping. Firstly, flux density without slots and complex relative air-gap permeance of slotted air gap are derived from conformal transformation separately. Secondly, they are combined in order to obtain normalized flux density taking account into the slots effect. The finite element (FE) results confirmed the validity of the analytical method for predicting magnetic field and back electromotive force (BEMF) in the slotted air gap of spoke-type permanent-magnet machines. In comparison with FE result, the analytical solution yields higher peak value of cogging torque.


2006 ◽  
Vol 126 (12) ◽  
pp. 1722-1729 ◽  
Author(s):  
Akeshi Takahashi ◽  
Haruo Koharagi ◽  
Satoshi Kikuchi ◽  
Kazumasa Ide ◽  
Kazuo Shima

Sign in / Sign up

Export Citation Format

Share Document