scholarly journals Using Multi-Angle Imaging SpectroRadiometer Aerosol Mixture Properties for Air Quality Assessment in Mongolia

2018 ◽  
Vol 10 (8) ◽  
pp. 1317 ◽  
Author(s):  
Meredith Franklin ◽  
Khang Chau ◽  
Olga Kalashnikova ◽  
Michael Garay ◽  
Temuulen Enebish ◽  
...  

Ulaanbaatar (UB), the capital city of Mongolia, has extremely poor wintertime air quality with fine particulate matter concentrations frequently exceeding 500 μg/m3, over 20 times the daily maximum guideline set by the World Health Organization. Intensive use of sulfur-rich coal for heating and cooking coupled with an atmospheric inversion amplified by the mid-continental Siberian anticyclone drive these high levels of air pollution. Ground-based air quality monitoring in Mongolia is sparse, making use of satellite observations of aerosol optical depth (AOD) instrumental for characterizing air pollution in the region. We harnessed data from the Multi-angle Imaging SpectroRadiometer (MISR) Version 23 (V23) aerosol product, which provides total column AOD and component-particle optical properties for 74 different aerosol mixtures at 4.4 km spatial resolution globally. To test the performance of the V23 product over Mongolia, we compared values of MISR AOD with spatially and temporally matched AOD from the Dalanzadgad AERONET site and find good agreement (correlation r = 0.845, and root-mean-square deviation RMSD = 0.071). Over UB, exploratory principal component analysis indicates that the 74 MISR AOD mixture profiles consisted primarily of small, spherical, non-absorbing aerosols in the wintertime, and contributions from medium and large dust particles in the summertime. Comparing several machine learning methods for relating the 74 MISR mixtures to ground-level pollutants, including particulate matter with aerodynamic diameters smaller than 2.5 μm ( PM 2.5 ) and 10 μm ( PM 10 ), as well as sulfur dioxide ( SO 2 ), a proxy for sulfate particles, we find that Support Vector Machine regression consistently has the highest predictive performance with median test R 2 for PM 2.5 , PM 10 , and SO 2 equal to 0.461, 0.063, and 0.508, respectively. These results indicate that the high-dimensional MISR AOD mixture set can provide reliable predictions of air pollution and can distinguish dominant particle types in the UB region.

1970 ◽  
Vol 46 (3) ◽  
pp. 389-398 ◽  
Author(s):  
MA Rouf ◽  
M Nasiruddin ◽  
AMS Hossain ◽  
MS Islam

Dhaka City has been affecting with severe air pollution particularly by particulate matter. The ambient air quality data for particulate matter were collected during April 2002 to September 2005 at the Continuous Air Quality Monitoring Station (CAMS) located at Sangshad Bhaban, Dhaka. Data reveal that the pollution from particulate matter greatly varies with climatic condition. While the level comes down the limit value in the monsoon period (April-October), it goes beyond the limit during non-monsoon time (November-March). The latest data show that during monsoon period PM 10 concentration varies from 50 μg/m3 to 80 μg/m3 and PM 2.5 concentration from 20 μg/m3 to 60 μg/m3 and during non monsoon period PM 10 varies from 100 μg/m3 to 250 μg/m3 and PM 2.5 varies from 70 μg/m3 to 165 μg/m3. The seasonal variation clearly indicates the severe PM 10 pollution during the dry winter season and also sometime during post-monsoon season in Dhaka City. Keywords: Air pollution; PM 2.5; PM 10; Air quality DOI: http://dx.doi.org/10.3329/bjsir.v46i3.9049 BJSIR 2011; 46(3): 389-398


2020 ◽  
Author(s):  
Daniel Kiser ◽  
William J. Metcalf ◽  
Gai Elhanan ◽  
Brendan Schnieder ◽  
Karen Schlauch ◽  
...  

Abstract Background: Health risks due to particulate matter (PM) from wildfires may differ from risk due to PM from other sources. In places frequently subjected to wildfire smoke, such as Reno, Nevada, it is critical to determine whether wildfire PM poses unique risks. Our goal was to quantify the difference in the association of adverse asthma events with PM on days when wildfire smoke was present versus days when wildfire smoke was not present. Methods: We obtained counts of visits for asthma at emergency departments and urgent care centers from a large regional healthcare system in Reno for the years 2013-2018. We also obtained dates when wildfire smoke was present from the Washoe County Health District Air Quality Management Division. We then examined whether the presence of wildfire smoke modified the association of PM 2.5 , PM 10-2.5 , and PM 10 with asthma visits using generalized additive models. We improved on previous studies by accounting for possible non-linearity in the association between PM concentration and asthma visits: wildfire-smoke days where the PM concentration exceeded the maximum PM concentration on other days were excluded. Results: Air quality was affected by wildfire smoke on 188 days between 2013 and 2018. We found that the presence of wildfire smoke increased the association of a 5 µg/m 3 increase in daily and three-day averages of PM 2.5 with asthma visits by 6.1% (95% confidence interval (CI): 2.1-10.3%) and 6.8% (CI: 1.2-12.7%), respectively. Similarly, the presence of wildfire smoke increased the association of a 5 µg/m 3 increase in daily and three-day averages of PM 10 with asthma visits by 5.5% (CI: 2.5-8.6%) and 7.2% (CI: 2.6-12.0%), respectively. We did not observe any significant increases in association for PM 10-2.5 or for seven-day averages of PM 2.5­ and PM 10 . Conclusions: Since we found significantly stronger associations of PM 2.5 and PM 10 with asthma visits when wildfire smoke was present, our results suggest that wildfire PM is more hazardous than non-wildfire PM for patients with asthma.


2021 ◽  
Vol 14 (4) ◽  
pp. 1895-1890
Author(s):  
Dibyendu Saha

Air pollution is a notable worldwide warning to human health. Every year, air pollution is accountable for more than five million death, out of these 91% occur in lower-middle-income countries. In addition to this, various respiratory & cardiovascular diseases, lower productivity and increased mortality are also related to air pollution, that’s why it’s often called a silent or invisible killer. However, Ecotourism generates opportunities for tourists wishing to enjoy the natural environment without destructing or disturbing its habitats. It is increasingly considered instrumental in helping the local socio-economic sustainable development and also as a means for generating revenues with the object of preserving the local traditional culture and craft. Environmental ambient quality must be considered as a crucial aspect in the predetermining process of prospective tourists and tourism destinations. The present study site Baranti, in Raghunathpur subdivision of Purulia district, West Bengal, India is situated in a splendid location within Baranti Lake and Baranti Hill, both has emerged as a fast-grown ecotourism spot over the last 7-8 years. The present study was carried out through survey questionnaire method from May 2020 (01.05.2020) - November 2020 (30.11.2020) on different categories of respondents like local people, hotel-resort owners & staff, local businessmen and tourists and simultaneously during this period, the air quality was also measured in respect of temperature, humidity, PM 2.5, PM 10, particles and CO2 through Temtop M2000C Air Quality Monitor at the said site. In the observation, ambient air quality was measured at three hours intervals on a day every week and 10 readings were taken from each site at a distance of 10 meters apart and the mean values were considered for statistical analyses. It was found that average PM 2.5, PM 10 & CO2 in ambient air in the study site were 64.26 ug/m3, 89.43 ug/m3 & 701.66 respectively therefore unexpectedly the ambient air is not only polluted but also moderate to unhealthy in respect of the said parameters as judged by the yardstick of Air Quality Guideline Levels laid down by the WHO. A well-defined management plan is required for controlling and minimising the said pollution with the interference of the Government and other agencies for the sustainable growth and development of the said ecotourism spot.


Author(s):  
Dr. Yashoda Tammineni

It’s of great concern to observe that the capital of our country, Delhi is under the severe grip of air pollution since a couple of days sending most alarming indications even for a national emergency. The Air quality index (AQI) entered the "severe plus" or "emergency" category and the Pollution levels in Delhi peaked to a three-year high in the month of November this year. Alarmingly, the level of particulate matter (PM) in the air reached intolerable level and the real time AQI was as high as 999 at monitoring stations at many places in Delhi. The smog (smoke and fog) has reached such an intolerable state that the people are suffering from severe pulmonary disorders and the visual clearance has enormously reduced leading to road accidents and even effected the air trafficking. Until and unless the AQI comes down drastically general living conditions in Delhi seems to be next to impossible. KEYWORDS: Air quality index (AQI), PM 2.5 Pollution, PM 10 Pollution, Severe Smog, Pulmonary disorders


2020 ◽  
Author(s):  
Anu Dahal ◽  
Indira Parajuli

Abstract Indoor Air Pollution (IAP) from smoky cooking fires causes deaths over 22,800 per year being the fourth leading cause of death in Nepal. The study aims to compare the pollution level particularly Carbon Monoxide (CO) and Particulate Matter (PM 2.5 ) in different firewood species. Two households one with ICS and TCS is selected purposively to monitor the concentration of pollutants in Ward no. 3 of Gatlang, Rasuwa, Nepal. IAP Meter based on Laser Sensor principle is used to monitor real time concentration of PM 2.5 and CO. 24 hours mean concentration of PM 2.5 and 8 hours mean average concentrations of CO are found to be above the WHO and National Indoor Air Quality Guidelines i.e. For ICS using household the concentration is found to be 155.26 µg/m 3 and 9 ppm respectively and household using TCS is found to be 385.12 µg/m 3 and 12.2 ppm). Both pollutants’ concentration is found less in Abies Spectabilis than other species. Positive correlation is found in both households along with moisture content, amount of firewood used, etc. This result suggests the use of Abies Spectabilis as it emits less emission as compared to other species as it has less moisture content that reduces the concentration of air pollution. Keywords : Carbon Monoxide 1 , Particulate Matter (PM 2.5 ) 2 , Indoor Air Pollution 3


2018 ◽  
Vol 69 (1) ◽  
pp. 105-111
Author(s):  
Carmen Otilia Rusanescu ◽  
Cosmin Jinescu ◽  
Marin Rusanescu ◽  
Mihaela Begea ◽  
Olimpia Ghermec

In this paper is analysed the air quality in urban areas in Bucharest, the analysis was based on the monitoring of the average concentration of particulate matter PM 10, nitrogen oxides, NO2, and sulfur dioxide, SO2 in Bucharest between 2009-2015. The analysis refers to the maximum concentration of 24 h and the occurrence of overruns beyond the limit set. It also looked at the wind regime, air quality and temperature influence on air pollution in Bucharest between 2009-2015.


2018 ◽  
Vol 21 (3) ◽  
Author(s):  
Ewa Krakowiak ◽  
Jolanta Cembrzyńska

Particulate matter air pollution is one of global environmental threats and is considered by the World Health Organisation (WHO) to be a direct cause of deteriorated health and living conditions. In Poland, air pollution exceeds the levels associated with the risk of acute and chronic health conditions many times a year. In order to protect public health, it is necessary to improve air quality by eliminating or reducing the emission of pollutants to acceptable levels. Individual exposure to particulate air pollution, especially during the periods of high concentrations, may be limited by taking appropriate measures such as staying indoors with windows closed, reducing the inflow of outdoor air, limiting outdoor exercise, especially near the sources of emissions. The growing number of public air quality alert systems helps raise awareness of the risk. Avoiding exposure to air pollution is particularly important for sensitive populations. Studies should be continued to investigate the mechanisms underlying the reduction of negative effects of air pollution on health by vitamin/antioxidant supplementation or balanced diet, as well as by using personal protective equipment (filter half masks) to develop appropriate guidelines for both the sensitive and general population. It is important to develop appropriate, individually tailored strategies for reducing harm related to particulate matter air pollution without abandoning healthy physical activity. Action taken individually by each person must be safe and bring appropriate health benefits.


2020 ◽  
Author(s):  
Daniel Kiser ◽  
William J. Metcalf ◽  
Gai Elhanan ◽  
Brendan Schnieder ◽  
Karen Schlauch ◽  
...  

Abstract Background: Health risks due to particulate matter (PM) from wildfires may differ from risk due to PM from other sources. In places frequently subjected to wildfire smoke, such as Reno, Nevada, it is critical to determine whether wildfire PM poses unique risks. Our goal was to quantify the difference in the association of adverse asthma events with PM on days when wildfire smoke was present versus days when wildfire smoke was not present. Methods: We obtained counts of visits for asthma at emergency departments and urgent care centers from a large regional healthcare system in Reno for the years 2013-2018. We also obtained dates when wildfire smoke was present from the Washoe County Health District Air Quality Management Division. We then examined whether the presence of wildfire smoke modified the association of PM 2.5 , PM 10-2.5 , and PM 10 with asthma visits using generalized additive models. We improved on previous studies by accounting for possible non-linearity in the association between PM concentration and asthma visits: wildfire-smoke days where the PM concentration exceeded the maximum PM concentration on other days were excluded. Results: Air quality was affected by wildfire smoke on 188 days between 2013 and 2018. We found that the presence of wildfire smoke increased the association of a 5 µg/m 3 increase in daily and three-day averages of PM 2.5 with asthma visits by 6.1% (95% confidence interval (CI): 2.1-10.3%) and 6.8% (CI: 1.2-12.7%), respectively. Similarly, the presence of wildfire smoke increased the association of a 5 µg/m 3 increase in daily and three-day averages of PM 10 with asthma visits by 5.5% (CI: 2.5-8.6%) and 7.2% (CI: 2.6-12.0%), respectively. We did not observe any significant increases in association for PM 10-2.5 or for seven-day averages of PM 2.5­ and PM 10 . Conclusions: Since we found significantly stronger associations of PM 2.5 and PM 10 with asthma visits when wildfire smoke was present, our results suggest that wildfire PM is more hazardous than non-wildfire PM for patients with asthma.


Author(s):  
Nilüfer Aykaç ◽  
Pınar Pazarlı Bostan ◽  
Sabri Serhan Olcay ◽  
Berker Öztürk

INTRODUCTION: Particulate matter, sulfur dioxide, ozone, and nitrogen oxide compounds are the main air pollutants. The purpose of this research is to analyze the five-year air quality of Istanbul and examine the effect of movement restrictions due to the COVID-19 pandemic on pollutants. METHODS: The public data of the National Air Quality Observation Network has been utilized. The research has been conducted based on the five-year daily averages of PM10, NO2, and NOx pollutants for Istanbul between 2016 - 2020. The data of stations which measured for 75% and more throughout the year has been used. The effect of lockdowns enforced due to COVID-19 was revealed by comparing data of pollutants from April and May of 2020 to the same period in 2019. RESULTS: There were 12 stations between 2016 – 2018, and 39 stations in 2019 and 2020 which measured particulate matter and nitrogen oxide compounds. Only 9 stations reached the standard of measuring pollution for 75% and more throughout the year. The PM10, NO2, and NOx levels measured by all the 9 stations between 2016 - 2020 are above the limit values set by the World Health Organization (WHO). The lockdowns in 2020 have not been helping improvements in air pollution issue. However, there have been regressions of 33.4%, 59.6%, and 52.6% in the overall average particulate matter, nitrogen oxide, and nitrogen dioxide concentrations during the lockdowns between 23-26 of April, 1-3 of May, and 23-26 of May, respectively. DISCUSSION AND CONCLUSION: The air pollution issue in Istanbul has not improved in a meaningful and significant manner for the last five years. There is a significant deficiency in measuring traffic pollution. It has been found that two days long lockdowns and physical movement restrictions due to COVID-19 have significantly contributed to a significant regression in the overall concentration of air pollutants.


Sign in / Sign up

Export Citation Format

Share Document