scholarly journals Observed High-Latitude Precipitation Amount and Pattern and CMIP5 Model Projections

2018 ◽  
Vol 10 (10) ◽  
pp. 1583 ◽  
Author(s):  
Ali Behrangi ◽  
Mark Richardson

Utilizing reanalysis and high sensitivity W-band radar observations from CloudSat, this study assesses simulated high-latitude (55–82.5°) precipitation and its future changes under the RCP8.5 global warming scenario. A subset of models was selected based on the smallest discrepancy relative to CloudSat and ERA-I reanalysis using a combined ranking for bias and spatial root mean square error (RMSE). After accounting for uncertainties introduced by internal variability due to CloudSat’s limited four year day-night observation period, RMSE provides greater discrimination between the models than a typical mean state bias criterion. Over 1976–2005 to 2071–2100, colder months experience larger fractional modelled precipitation increases than warmer months, and the observation-constrained models generally report a larger response than the full ensemble. For everywhere except the Southern Hemisphere (SH55, for 55–82.5°S) ocean, the selected models show greater warming than the model ensemble while their hydrological sensitivity (fractional precipitation change with temperature) is indistinguishable from the full ensemble relationship. This indicates that local thermodynamic effects explain much of the net high-latitude precipitation change. For the SH ocean, the models that perform best in the present climate show near-median warming but greater precipitation increase, implying a detectable contribution from processes other than local thermodynamic changes. A Taylor diagram analysis of the full CMIP5 ensemble finds that the Northern Hemisphere (NH55) and SH55 land areas follow a “wet get wetter” paradigm. The SH55 land areas show stable spatial correlations between the simulated present and future climate, indicative of small changes in the spatial pattern, but this is not true of NH55 land. This shows changes in the spatial pattern of precipitation changes through time as well as the differences in precipitation between wet and dry regions.

2015 ◽  
Vol 8 (8) ◽  
pp. 8157-8189
Author(s):  
L. Norin ◽  
A. Devasthale ◽  
T. S. L'Ecuyer ◽  
N. B. Wood ◽  
M. Smalley

Abstract. To be able to estimate snowfall accurately is important for both weather and climate applications. Ground-based weather radars and space-based satellite sensors are often used as viable alternatives to rain-gauges to estimate precipitation in this context. The Cloud Profiling Radar (CPR) onboard CloudSat is especially proving to be a useful tool to map snowfall globally, in part due to its high sensitivity to light precipitation and ability to provide near-global vertical structure. The importance of having snowfall estimates from CloudSat/CPR further increases in the high latitude regions as other ground-based observations become sparse and passive satellite sensors suffer from inherent limitations. Here we intercompared snowfall estimates from two observing systems, CloudSat and Swerad, the Swedish national weather radar network. Swerad offers one of the best calibrated data sets of precipitation amount at very high latitudes that are anchored to rain-gauges and that can be exploited to evaluate usefulness of CloudSat/CPR snowfall estimates in the polar regions. In total 7.2×105 matchups of CloudSat and Swerad over Sweden were inter-compared covering all but summer months (October to May) from 2008 to 2010. The intercomparison shows encouraging agreement between these two observing systems despite their different sensitivities and user applications. The best agreement is observed when CloudSat passes close to a Swerad station (46–82 km), when the observational conditions for both systems are comparable. Larger disagreements outside this range suggest that both platforms have difficulty with shallow snow but for different reasons. The correlation between Swerad and CloudSat degrades with increasing distance from the nearest Swerad station as Swerad's sensitivity decreases as a function of distance and Swerad also tends to overshoots low level precipitating systems further away from the station, leading to underestimation of snowfall rate and occasionally missing the precipitation altogether. Further investigations of various statistical metrics, such as the probability of detection, false alarm rate, hit rate, and the Hanssen–Kuipers skill scores, and the sensitivity of these metrics to snowfall rate and the distance from the radar station, were carried out. The results of these investigations highlight the strengths and the limitations of both observing systems at the lower and upper ends of snowfall distributions and the range of uncertainties that could be expected from these systems in the high latitude regions.


2019 ◽  
Vol 32 (19) ◽  
pp. 6491-6511 ◽  
Author(s):  
Hugh S. Baker ◽  
Tim Woollings ◽  
Chris E. Forest ◽  
Myles R. Allen

Abstract The North Atlantic Oscillation (NAO) and eddy-driven jet contain a forced component arising from sea surface temperature (SST) variations. Due to large amounts of internal variability, it is not trivial to determine where and to what extent SSTs force the NAO and jet. A linear statistical–dynamic method is employed with a large climate ensemble to compute the sensitivities of the winter and summer NAO and jet speed and latitude to the SSTs. Key regions of sensitivity are identified in the Indian and Pacific basins, and the North Atlantic tripole. Using the sensitivity maps and a long observational SST dataset, skillful reconstructions of the NAO and jet time series are made. The ability to skillfully forecast both the winter and summer NAO using only SST anomalies is also demonstrated. The linear approach used here allows precise attribution of model forecast signals to SSTs in particular regions. Skill comes from the Atlantic and Pacific basins on short lead times, while the Indian Ocean SSTs may contribute to the longer-term NAO trend. However, despite the region of high sensitivity in the Indian Ocean, SSTs here do not provide significant skill on interannual time scales, which highlights the limitations of the imposed SST approach. Given the impact of the NAO and jet on Northern Hemisphere weather and climate, these results provide useful information that could be used for improved attribution and forecasting.


1998 ◽  
Vol 167 ◽  
pp. 163-170
Author(s):  
Yutaka Uchida

AbstractWe describe in this paper some of the findings of the Yohkoh satellite about the coronal structure surrounding dark filaments in the pre-event and initial phases of high latitude arcade formation events. The knowledge of pre-event structure and its change is essential for the proper understanding of the arcade flaring process from the causality point of view. The wide dynamic range and high sensitivity obervations by Yohkoh allow us to look into the faint structures and their changes with the use of a faint-feature-enhancing technique in the image analysis.


2020 ◽  
Vol 117 (20) ◽  
pp. 10706-10714 ◽  
Author(s):  
Hiroyuki Murakami ◽  
Thomas L. Delworth ◽  
William F. Cooke ◽  
Ming Zhao ◽  
Baoqiang Xiang ◽  
...  

Owing to the limited length of observed tropical cyclone data and the effects of multidecadal internal variability, it has been a challenge to detect trends in tropical cyclone activity on a global scale. However, there is a distinct spatial pattern of the trends in tropical cyclone frequency of occurrence on a global scale since 1980, with substantial decreases in the southern Indian Ocean and western North Pacific and increases in the North Atlantic and central Pacific. Here, using a suite of high-resolution dynamical model experiments, we show that the observed spatial pattern of trends is very unlikely to be explained entirely by underlying multidecadal internal variability; rather, external forcing such as greenhouse gases, aerosols, and volcanic eruptions likely played an important role. This study demonstrates that a climatic change in terms of the global spatial distribution of tropical cyclones has already emerged in observations and may in part be attributable to the increase in greenhouse gas emissions.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Y. T. Eunice Lo ◽  
Andrew J. Charlton-Perez ◽  
Fraser C. Lott ◽  
Eleanor J. Highwood

Abstract Sulphate aerosol injection has been widely discussed as a possible way to engineer future climate. Monitoring it would require detecting its effects amidst internal variability and in the presence of other external forcings. We investigate how the use of different detection methods and filtering techniques affects the detectability of sulphate aerosol geoengineering in annual-mean global-mean near-surface air temperature. This is done by assuming a future scenario that injects 5 Tg yr−1 of sulphur dioxide into the stratosphere and cross-comparing simulations from 5 climate models. 64% of the studied comparisons would require 25 years or more for detection when no filter and the multi-variate method that has been extensively used for attributing climate change are used, while 66% of the same comparisons would require fewer than 10 years for detection using a trend-based filter. This highlights the high sensitivity of sulphate aerosol geoengineering detectability to the choice of filter. With the same trend-based filter but a non-stationary method, 80% of the comparisons would require fewer than 10 years for detection. This does not imply sulphate aerosol geoengineering should be deployed, but suggests that both detection methods could be used for monitoring geoengineering in global, annual mean temperature should it be needed.


2020 ◽  
Author(s):  
Stephanie Fiedler ◽  
Traute Crueger ◽  
Roberta D’Agostino ◽  
Karsten Peters ◽  
Tobias Becker ◽  
...  

<p>Climate models are known to have biases in tropical precipitation. We assessed to what extent simulations of tropical precipitation have improved in the new Coupled Model Intercomparison Project (CMIP) phase six, using state-of-the-art observational products and model results from the earlier CMIP phases three and five. We characterize tropical precipitation with different well-established metrics. Our assessment includes (1) general aspects of the mean climatology like precipitation associated with the Intertropical Convergence Zone and shallow cloud regimes in the tropics, (2) solar radiative effects including the summer monsoons and the time of occurrence of tropical precipitation in the course of the day, (3) modes of internal variability such as the Madden-Julian Oscillation and the El Niño Southern Oscillation, and (4) changes in the course of the 20th century. The results point to improvements of CMIP6 models for some metrics, e.g., the occurrence of drizzle events and consecutive dry days. However, no improvements of CMIP6 models are identified for other aspects of tropical precipitation. These include the area and intensity of the global summer monsoon as well as the diurnal cycle of the tropical precipitation amount, frequency and intensity.</p><p>All our metrics taken together, CMIP6 models show no systematic improvement of tropical precipitation across different temporal and spatial scales. The model biases in the spatial distribution of tropical precipitation are typically larger than the changes associated with anthropogenic warming. Given the pace of climate change as compared to the pace of climate model improvements, we suggest to use novel modeling approaches to understand the responseof tropical precipitation to changes in atmospheric composition.</p>


2020 ◽  
Author(s):  
Lukas Brunner ◽  
Carol McSweeney ◽  
Daniel Befort ◽  
Chris O'Reilly ◽  
Ben Booth ◽  
...  

<p>Political decisions, adaptation planning, and impact assessments need reliable estimates of future climate change and related uncertainties. Different approaches to constrain, filter, or weight climate model simulations into probabilistic projections have been proposed to provide such estimates. Here six methods are applied to European climate projections using a consistent framework in order to allow a quantitative comparison.  Focus is given to summer temperature and precipitation change in three different spatial regimes in Europe in the period 2041-2060 relative to 1995-2014. The analysis draws on projections from several large initial condition ensembles, the CMIP5 multi-model ensemble, and perturbed physics ensembles, all using the high-emission scenario RCP8.5.  <br>The methods included are diverse in their approach to quantifying uncertainty, and include those which apply weighting schemes based on baseline performance and inter-model relationships, so-called ASK (Allen, Stott and Kettleborough) techniques which use optimal fingerprinting to scale the scale the response to external forcings, to those found in observations and Bayesian approaches to estimating probability distributions. Some of the key differences between methods are the uncertainties covered, the treatment of internal variability, and variables and regions used to inform the methods. In spite of these considerable methodological differences, the median projection from the multi-model methods agree on a statistically significant increase in temperature by mid-century by about 2.5°C in the European average. The estimates of spread, in contrast, differ substantially between methods. Part of this large difference in the spread reflects the fact that different methods attempt to capture different sources of uncertainty, and some are more comprehensive in this respect than others. This study, therefore, highlights the importance of providing clear context about how different methods affect the distribution of projections, particularly the in the upper and lower percentiles that are of interest to 'risk averse' stakeholders. Methods find less agreement in precipitation change with most methods indicating a slight increase in northern Europe and a drying in the central and Mediterranean regions, but with considerably different amplitudes. Further work is needed to understand how the underlying differences between methods lead to such diverse results for precipitation. </p>


2021 ◽  
Author(s):  
Daniele Pirone ◽  
Daniele Sirico ◽  
Lisa Miccio ◽  
Vittorio Bianco ◽  
Martina Mugnano ◽  
...  

The most recent discoveries in the biochemical field are highlighting the increasingly important role of lipid droplets (LDs) in several regulatory mechanisms in living cells. LDs are dynamic organelles and therefore their complete characterization in terms of number, size, spatial positioning and relative distribution in the cell volume can shed light on the roles played by LDs. Until now, fluorescence microscopy and transmission electron microscopy are assessed as the gold standard methods for identifying LDs due to their high sensitivity and specificity. However, such methods generally only provide 2D assays and partial measurements. Furthermore, both can be destructive and with low productivity, thus limiting analysis of large cell numbers in a sample. Here we demonstrate for the first time the capability of 3D visualization and the full LD characterization in high-throughput with a tomographic phase-contrast flow-cytometer, by using ovarian cancer cells and monocyte cell lines as models. A strategy for retrieving significant parameters on spatial correlations and LD 3D positioning inside each cell volume is reported. The information gathered by this new method could allow more in depth understanding and lead to new discoveries on how LDs are correlated to cellular functions.


Sign in / Sign up

Export Citation Format

Share Document