scholarly journals Multimodal and Multi-Model Deep Fusion for Fine Classification of Regional Complex Landscape Areas Using ZiYuan-3 Imagery

2019 ◽  
Vol 11 (22) ◽  
pp. 2716 ◽  
Author(s):  
Xianju Li ◽  
Zhuang Tang ◽  
Weitao Chen ◽  
Lizhe Wang

Land cover classification (LCC) of complex landscapes is attractive to the remote sensing community but poses great challenges. In complex open pit mining and agricultural development landscapes (CMALs), the landscape-specific characteristics limit the accuracy of LCC. The combination of traditional feature engineering and machine learning algorithms (MLAs) is not sufficient for LCC in CMALs. Deep belief network (DBN) methods achieved success in some remote sensing applications because of their excellent unsupervised learning ability in feature extraction. The usability of DBN has not been investigated in terms of LCC of complex landscapes and integrating multimodal inputs. A novel multimodal and multi-model deep fusion strategy based on DBN was developed and tested for fine LCC (FLCC) of CMALs in a 109.4 km 2 area of Wuhan City, China. First, low-level and multimodal spectral–spatial and topographic features derived from ZiYuan-3 imagery were extracted and fused. The features were then input into a DBN for deep feature learning. The developed features were fed to random forest and support vector machine (SVM) algorithms for classification. Experiments were conducted that compared the deep features with the softmax function and low-level features with MLAs. Five groups of training, validation, and test sets were performed with some spatial auto-correlations. A spatially independent test set and generalized McNemar tests were also employed to assess the accuracy. The fused model of DBN-SVM achieved overall accuracies (OAs) of 94.74%± 0.35% and 81.14% in FLCC and LCC, respectively, which significantly outperformed almost all other models. From this model, only three of the twenty land covers achieved OAs below 90%. In general, the developed model can contribute to FLCC and LCC in CMALs, and more deep learning algorithm-based models should be investigated in future for the application of FLCC and LCC in complex landscapes.

2020 ◽  
pp. 35
Author(s):  
M. Campos-Taberner ◽  
F.J. García-Haro ◽  
B. Martínez ◽  
M.A. Gilabert

<p class="p1">The use of deep learning techniques for remote sensing applications has recently increased. These algorithms have proven to be successful in estimation of parameters and classification of images. However, little effort has been made to make them understandable, leading to their implementation as “black boxes”. This work aims to evaluate the performance and clarify the operation of a deep learning algorithm, based on a bi-directional recurrent network of long short-term memory (2-BiLSTM). The land use classification in the Valencian Community based on Sentinel-2 image time series in the framework of the common agricultural policy (CAP) is used as an example. It is verified that the accuracy of the deep learning techniques is superior (98.6 % overall success) to that other algorithms such as decision trees (DT), k-nearest neighbors (k-NN), neural networks (NN), support vector machines (SVM) and random forests (RF). The performance of the classifier has been studied as a function of time and of the predictors used. It is concluded that, in the study area, the most relevant information used by the network in the classification are the images corresponding to summer and the spectral and spatial information derived from the red and near infrared bands. These results open the door to new studies in the field of the explainable deep learning in remote sensing applications.</p>


2019 ◽  
Vol 12 (1) ◽  
pp. 82 ◽  
Author(s):  
Weitao Chen ◽  
Xianju Li ◽  
Lizhe Wang

Fine land cover classification in an open pit mining area (LCCOM) is essential in analyzing the terrestrial environment. However, researchers have been focusing on obtaining coarse LCCOM while using high spatial resolution remote sensing data and machine learning algorithms. Although support vector machines (SVM) have been successfully used in the remote sensing community, achieving a high classification accuracy of fine LCCOM using SVM remains difficult because of two factors. One is the lack of significant features for efficiently describing unique terrestrial characteristics of open pit mining areas and another is the lack of an optimized strategy to obtain suitable SVM parameters. This study attempted to address these two issues. Firstly, a novel carbonate index that was based on WorldView-3 was proposed and introduced into the used feature set. Additionally, three optimization methods—genetic algorithm (GA), k-fold cross validation (CV), and particle swarm optimization (PSO)—were used for obtaining the optimization parameters of SVM. The results show that the carbonate index was effective for distinguishing the dumping ground from other open pit mining lands. Furthermore, the three optimization methods could significantly increase the overall classification accuracy (OA) of the fine LCCOM by 8.40%. CV significantly outperformed GA and PSO, and GA performed slightly better than PSO. CV was more suitable for most of the fine land cover types of crop land, and PSO for road and open pit mining lands. The results of an independent test set revealed that the optimized SVM models achieved significant improvements, with an average of 8.29%. Overall, the proposed strategy was effective for fine LCCOM.


2021 ◽  
pp. 1-17
Author(s):  
Ahmed Al-Tarawneh ◽  
Ja’afer Al-Saraireh

Twitter is one of the most popular platforms used to share and post ideas. Hackers and anonymous attackers use these platforms maliciously, and their behavior can be used to predict the risk of future attacks, by gathering and classifying hackers’ tweets using machine-learning techniques. Previous approaches for detecting infected tweets are based on human efforts or text analysis, thus they are limited to capturing the hidden text between tweet lines. The main aim of this research paper is to enhance the efficiency of hacker detection for the Twitter platform using the complex networks technique with adapted machine learning algorithms. This work presents a methodology that collects a list of users with their followers who are sharing their posts that have similar interests from a hackers’ community on Twitter. The list is built based on a set of suggested keywords that are the commonly used terms by hackers in their tweets. After that, a complex network is generated for all users to find relations among them in terms of network centrality, closeness, and betweenness. After extracting these values, a dataset of the most influential users in the hacker community is assembled. Subsequently, tweets belonging to users in the extracted dataset are gathered and classified into positive and negative classes. The output of this process is utilized with a machine learning process by applying different algorithms. This research build and investigate an accurate dataset containing real users who belong to a hackers’ community. Correctly, classified instances were measured for accuracy using the average values of K-nearest neighbor, Naive Bayes, Random Tree, and the support vector machine techniques, demonstrating about 90% and 88% accuracy for cross-validation and percentage split respectively. Consequently, the proposed network cyber Twitter model is able to detect hackers, and determine if tweets pose a risk to future institutions and individuals to provide early warning of possible attacks.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 617
Author(s):  
Umer Saeed ◽  
Young-Doo Lee ◽  
Sana Ullah Jan ◽  
Insoo Koo

Sensors’ existence as a key component of Cyber-Physical Systems makes it susceptible to failures due to complex environments, low-quality production, and aging. When defective, sensors either stop communicating or convey incorrect information. These unsteady situations threaten the safety, economy, and reliability of a system. The objective of this study is to construct a lightweight machine learning-based fault detection and diagnostic system within the limited energy resources, memory, and computation of a Wireless Sensor Network (WSN). In this paper, a Context-Aware Fault Diagnostic (CAFD) scheme is proposed based on an ensemble learning algorithm called Extra-Trees. To evaluate the performance of the proposed scheme, a realistic WSN scenario composed of humidity and temperature sensor observations is replicated with extreme low-intensity faults. Six commonly occurring types of sensor fault are considered: drift, hard-over/bias, spike, erratic/precision degradation, stuck, and data-loss. The proposed CAFD scheme reveals the ability to accurately detect and diagnose low-intensity sensor faults in a timely manner. Moreover, the efficiency of the Extra-Trees algorithm in terms of diagnostic accuracy, F1-score, ROC-AUC, and training time is demonstrated by comparison with cutting-edge machine learning algorithms: a Support Vector Machine and a Neural Network.


2021 ◽  
Author(s):  
Xiaotong Zhu ◽  
Jinhui Jeanne Huang

&lt;p&gt;Remote sensing monitoring has the characteristics of wide monitoring range, celerity, low cost for long-term dynamic monitoring of water environment. With the flourish of artificial intelligence, machine learning has enabled remote sensing inversion of seawater quality to achieve higher prediction accuracy. However, due to the physicochemical property of the water quality parameters, the performance of algorithms differs a lot. In order to improve the predictive accuracy of seawater quality parameters, we proposed a technical framework to identify the optimal machine learning algorithms using Sentinel-2 satellite and in-situ seawater sample data. In the study, we select three algorithms, i.e. support vector regression (SVR), XGBoost and deep learning (DL), and four seawater quality parameters, i.e. dissolved oxygen (DO), total dissolved solids (TDS), turbidity(TUR) and chlorophyll-a (Chla). The results show that SVR is a more precise algorithm to inverse DO (R&lt;sup&gt;2&lt;/sup&gt; = 0.81). XGBoost has the best accuracy for Chla and Tur inversion (R&lt;sup&gt;2&lt;/sup&gt; = 0.75 and 0.78 respectively) while DL performs better in TDS (R&lt;sup&gt;2&lt;/sup&gt; =0.789). Overall, this research provides a theoretical support for high precision remote sensing inversion of offshore seawater quality parameters based on machine learning.&lt;/p&gt;


Author(s):  
Sheela Rani P ◽  
Dhivya S ◽  
Dharshini Priya M ◽  
Dharmila Chowdary A

Machine learning is a new analysis discipline that uses knowledge to boost learning, optimizing the training method and developing the atmosphere within which learning happens. There square measure 2 sorts of machine learning approaches like supervised and unsupervised approach that square measure accustomed extract the knowledge that helps the decision-makers in future to require correct intervention. This paper introduces an issue that influences students' tutorial performance prediction model that uses a supervised variety of machine learning algorithms like support vector machine , KNN(k-nearest neighbors), Naïve Bayes and supplying regression and logistic regression. The results supported by various algorithms are compared and it is shown that the support vector machine and Naïve Bayes performs well by achieving improved accuracy as compared to other algorithms. The final prediction model during this paper may have fairly high prediction accuracy .The objective is not just to predict future performance of students but also provide the best technique for finding the most impactful features that influence student’s while studying.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Fei Tan ◽  
Xiaoqing Xie

Human motion recognition based on inertial sensor is a new research direction in the field of pattern recognition. It carries out preprocessing, feature selection, and feature selection by placing inertial sensors on the surface of the human body. Finally, it mainly classifies and recognizes the extracted features of human action. There are many kinds of swing movements in table tennis. Accurately identifying these movement modes is of great significance for swing movement analysis. With the development of artificial intelligence technology, human movement recognition has made many breakthroughs in recent years, from machine learning to deep learning, from wearable sensors to visual sensors. However, there is not much work on movement recognition for table tennis, and the methods are still mainly integrated into the traditional field of machine learning. Therefore, this paper uses an acceleration sensor as a motion recording device for a table tennis disc and explores the three-axis acceleration data of four common swing motions. Traditional machine learning algorithms (decision tree, random forest tree, and support vector) are used to classify the swing motion, and a classification algorithm based on the idea of integration is designed. Experimental results show that the ensemble learning algorithm developed in this paper is better than the traditional machine learning algorithm, and the average recognition accuracy is 91%.


2009 ◽  
Vol 15 (2) ◽  
pp. 241-271 ◽  
Author(s):  
YAOYONG LI ◽  
KALINA BONTCHEVA ◽  
HAMISH CUNNINGHAM

AbstractSupport Vector Machines (SVM) have been used successfully in many Natural Language Processing (NLP) tasks. The novel contribution of this paper is in investigating two techniques for making SVM more suitable for language learning tasks. Firstly, we propose an SVM with uneven margins (SVMUM) model to deal with the problem of imbalanced training data. Secondly, SVM active learning is employed in order to alleviate the difficulty in obtaining labelled training data. The algorithms are presented and evaluated on several Information Extraction (IE) tasks, where they achieved better performance than the standard SVM and the SVM with passive learning, respectively. Moreover, by combining SVMUM with the active learning algorithm, we achieve the best reported results on the seminars and jobs corpora, which are benchmark data sets used for evaluation and comparison of machine learning algorithms for IE. In addition, we also evaluate the token based classification framework for IE with three different entity tagging schemes. In comparison to previous methods dealing with the same problems, our methods are both effective and efficient, which are valuable features for real-world applications. Due to the similarity in the formulation of the learning problem for IE and for other NLP tasks, the two techniques are likely to be beneficial in a wide range of applications1.


2021 ◽  
Vol 25 (6) ◽  
pp. 61-67
Author(s):  
I.V. Zen’kov ◽  
Trinh Le Hung ◽  
Yu.P. Yuronen ◽  
P.M. Kondrashov ◽  
A.A. Latyntsev ◽  
...  

A brief description of the industrial and logistics center operating in the city of Novorossiysk on the coast of the Tsemesskaya Bay in the Black Sea is presented. According to remote sensing data, the area of open pit mining of rock dumps dumped during the development of three marl deposits for use at four cement plants was determined. According to the results of satellite imagery and analytical calculations, downward trends in changes in the density of vegetation cover in territories with natural landscapes adjacent to the territory of industrial facilities located on the coast of the Tsemesskaya Bay were revealed.


Sign in / Sign up

Export Citation Format

Share Document