scholarly journals The Precipitation Inferred from Soil Moisture (PrISM) Near Real-Time Rainfall Product: Evaluation and Comparison

2020 ◽  
Vol 12 (3) ◽  
pp. 481 ◽  
Author(s):  
Thierry Pellarin ◽  
Carlos Román-Cascón ◽  
Christian Baron ◽  
Rajat Bindlish ◽  
Luca Brocca ◽  
...  

Near real-time precipitation is essential to many applications. In Africa, the lack of dense rain-gauge networks and ground weather radars makes the use of satellite precipitation products unavoidable. Despite major progresses in estimating precipitation rate from remote sensing measurements over the past decades, satellite precipitation products still suffer from quantitative uncertainties and biases compared to ground data. Consequently, almost all precipitation products are provided in two modes: a real-time mode (also called early-run or raw product) and a corrected mode (also called final-run, adjusted or post-processed product) in which ground precipitation measurements are integrated in algorithms to correct for bias, generally at a monthly timescale. This paper describes a new methodology to provide a near-real-time precipitation product based on satellite precipitation and soil moisture measurements. Recent studies have shown that soil moisture intrinsically contains information on past precipitation and can be used to correct precipitation uncertainties. The PrISM (Precipitation inferred from Soil Moisture) methodology is presented and its performance is assessed for five in situ rainfall measurement networks located in Africa in semi-arid to wet areas: Niger, Benin, Burkina Faso, Central Africa, and East Africa. Results show that the use of SMOS (Soil Moisture and Ocean Salinity) satellite soil moisture measurements in the PrISM algorithm most often improves the real-time satellite precipitation products, and provides results comparable to existing adjusted products, such as TRMM (Tropical Rainfall Measuring Mission), GPCC (Global Precipitation Climatology Centre) and IMERG (Integrated Multi-satellitE Retrievals for GPM), which are available a few weeks or months after their detection.

2019 ◽  
Vol 11 (2) ◽  
pp. 140 ◽  
Author(s):  
Fei Yuan ◽  
Limin Zhang ◽  
Khin Soe ◽  
Liliang Ren ◽  
Chongxu Zhao ◽  
...  

Tropical Rainfall Measuring Mission (TRMM) and its successor, Global Precipitation Measurement (GPM), have provided hydrologists with important precipitation data sources for hydrological applications in sparsely gauged or ungauged basins. This study proposes a framework for statistical and hydrological assessment of the TRMM- and GPM-era satellite-based precipitation products (SPPs) in both near- and post-real-time versions at sub-daily temporal scales in a poorly gauged watershed in Myanmar. It evaluates six of the latest GPM-era SPPs: Integrated Multi-satellite Retrievals for GPM (IMERG) “Early”, “Late”, and “Final” run SPPs (IMERG-E, IMERG-L, and IMERG-F, respectively), and Global Satellite Mapping of Precipitation (GSMaP) near-real-time (GSMaP-NRT), standard version (GSMaP-MVK), and standard version with gauge-adjustment (GSMaP-GAUGE) SPPs, and two TRMM Multi-satellite Precipitation Analysis SPPs (3B42RT and 3B42V7). Statistical assessment at grid and basin scales shows that 3B42RT generally presents higher quality, followed by IMERG-F and 3B42V7. IMERG-E, IMERG-L, GSMaP-NRT, GSMaP-MVK, and GSMaP-GAUGE largely underestimate total precipitation, and the three GSMaP SPPs have the lowest accuracy. Given that 3B42RT demonstrates the best quality among the evaluated four near-real-time SPPs, 3B42RT obtains satisfactory hydrological performance in 3-hourly flood simulation, with a Nash–Sutcliffe model efficiency coefficient (NSE) of 0.868, and it is comparable with the rain-gauge-based precipitation data (NSE = 0.895). In terms of post-real-time SPPs, IMERG-F and 3B42V7 demonstrate acceptable hydrological utility, and IMERG-F (NSE = 0.840) slightly outperforms 3B42V7 (NSE = 0.828). This study found that IMERG-F demonstrates comparable or even slightly better accuracy in statistical and hydrological evaluations in comparison with its predecessor, 3B42V7, indicating that GPM-era IMERG-F is the reliable replacement for TRMM-era 3B42V7 in the study area. The GPM scientific community still needs to further refine precipitation retrieving algorithms and improve the accuracy of SPPs, particularly IMERG-E, IMERG-L, and GSMaP SPPs, because ungauged basins urgently require accurate and timely precipitation data for flood control and disaster mitigation.


2021 ◽  
Vol 13 (4) ◽  
pp. 622
Author(s):  
Wan-Ru Huang ◽  
Pin-Yi Liu ◽  
Ya-Hui Chang ◽  
Cheng-An Lee

This study assesses the performance of satellite precipitation products (SPPs) from the latest version, V06B, Integrated Multi-satellitE Retrievals for Global Precipitation Mission (IMERG) Level-3 (including early, late, and final runs), in depicting the characteristics of typhoon season (July to October) rainfall over Taiwan within the period of 2000–2018. The early and late runs are near-real-time SPPs, while final run is post-real-time SPP adjusted by monthly rain gauge data. The latency of early, late, and final runs is approximately 4 h, 14 h, and 3.5 months, respectively, after the observation. Analyses focus on the seasonal mean, daily variation, and interannual variation of typhoon-related (TC) and non-typhoon-related (non-TC) rainfall. Using local rain-gauge observations as a reference for evaluation, our results show that all IMERG products capture the spatio-temporal variations of TC rainfall better than those of non-TC rainfall. Among SPPs, the final run performs better than the late run, which is slightly better than the early run for most of the features assessed for both TC and non-TC rainfall. Despite these differences, all IMERG products outperform the frequently used Tropical Rainfall Measuring Mission 3B42 v7 (TRMM7) for the illustration of the spatio-temporal characteristics of TC rainfall in Taiwan. In contrast, for the non-TC rainfall, the final run performs notably better relative to TRMM7, while the early and late runs showed only slight improvement. These findings highlight the advantages and disadvantages of using IMERG products for studying or monitoring typhoon season rainfall in Taiwan.


2014 ◽  
Vol 15 (5) ◽  
pp. 1778-1793 ◽  
Author(s):  
Yiwen Mei ◽  
Emmanouil N. Anagnostou ◽  
Efthymios I. Nikolopoulos ◽  
Marco Borga

Abstract Accurate quantitative precipitation estimation over mountainous basins is of great importance because of their susceptibility to hazards such as flash floods, shallow landslides, and debris flows, triggered by heavy precipitation events (HPEs). In situ observations over mountainous areas are limited, but currently available satellite precipitation products can potentially provide the precipitation estimation needed for hydrological applications. In this study, four widely used satellite-based precipitation products [Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42, version 7 (3B42-V7), and in near–real time (3B42-RT); Climate Prediction Center (CPC) morphing technique (CMORPH); and Precipitation Estimation from Remotely Sensed Imagery Using Artificial Neural Networks (PERSIANN)] are evaluated with respect to their performance in capturing the properties of HPEs over different basin scales. Evaluation is carried out over the upper Adige River basin (eastern Italian Alps) for an 8-yr period (2003–10). Basin-averaged rainfall derived from a dense rain gauge network in the region is used as a reference. Satellite precipitation error analysis is performed for warm (May–August) and cold (September–December) season months as well as for different quantile ranges of basin-averaged precipitation accumulations. Three error metrics and a score system are introduced to quantify the performances of the various satellite products. Overall, no single precipitation product can be considered ideal for detecting and quantifying HPE. Results show better consistency between gauges and the two 3B42 products, particularly during warm season months that are associated with high-intensity convective events. All satellite products are shown to have a magnitude-dependent error ranging from overestimation at low precipitation regimes to underestimation at high precipitation accumulations; this effect is more pronounced in the CMORPH and PERSIANN products.


2020 ◽  
Author(s):  
Luca Brocca ◽  
Stefania Camici ◽  
Christian Massari ◽  
Luca Ciabatta ◽  
Paolo Filippucci ◽  
...  

<p>Soil moisture is a fundamental variable in the water and energy cycle and its knowledge in many applications is crucial. In the last decade, some authors have proposed the use of satellite soil moisture for estimating and improving rainfall, doing hydrology backward. From this research idea, several studies have been published and currently preoperational satellite rainfall products exploiting satellite soil moisture products have been made available.</p><p>The assessment of such products on a global scale has revealed an important result, i.e., the soil moisture based products perform better than state of the art products exactly over regions in which the data are needed: Africa and South America. However, over these areas the assessment against rain gauge observations is problematic and independent approaches are needed to assess the quality of such products and their potential benefit in hydrological applications. On this basis, the use of the satellite rainfall products as input into rainfall-runoff models, and their indirect assessment through river discharge observations is an alternative and valuable approach for evaluating their quality.</p><p>For this study, a newly developed large scale dataset of river discharge observations over 500+ basins throughout Africa has been exploited. Based on such unique dataset, a large scale assessment of multiple near real time satellite rainfall products has been performed: (1) the Early Run version of the Integrated Multi-Satellite Retrievals for GPM (Global Precipitation Measurement), IMERG Early Run, (2) SM2RAIN-ASCAT (https://doi.org/10.5281/zenodo.3405563), and (3) GPM+SM2RAIN (http://doi.org/10.5281/zenodo.3345323). Additionally, gauge-based and reanalysis rainfall products have been considered, i.e., (4) the Global Precipitation Climatology Centre (GPCC), and (5) the latest European Centre for Medium-Range Weather Forecasts reanalysis, ERA5. As rainfall-runoff model, the semi-distributed MISDc (Modello Idrologico Semi-Distribuito in continuo) model has been employed in the period 2007-2018 at daily temporal scale.</p><p>First results over a part of the dataset reveal the great value of satellite soil moisture products in improving satellite rainfall estimates for river flow prediction in Africa. Such results highlight the need to exploit such products for operational systems in Africa addressed to the mitigation of the flood risk and water resources management.</p>


2015 ◽  
Vol 12 (6) ◽  
pp. 5749-5787 ◽  
Author(s):  
W. Zhan ◽  
M. Pan ◽  
N. Wanders ◽  
E. F. Wood

Abstract. Rainfall and soil moisture are two key elements in modeling the interactions between the land surface and the atmosphere. Accurate and high-resolution real-time precipitation is crucial for monitoring and predicting the on-set of floods, and allows for alert and warning before the impact becomes a disaster. Assimilation of remote sensing data into a flood-forecasting model has the potential to improve monitoring accuracy. Space-borne microwave observations are especially interesting because of their sensitivity to surface soil moisture and its change. In this study, we assimilate satellite soil moisture retrievals using the Variable Infiltration Capacity (VIC) land surface model, and a dynamic assimilation technique, a particle filter, to adjust the Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis (TMPA) real-time precipitation estimates. We compare updated precipitation with real-time precipitation before and after adjustment and with NLDAS gauge-radar observations. Results show that satellite soil moisture retrievals provide additional information by correcting errors in rainfall bias. High accuracy soil moisture retrievals, when merged with precipitation, generally increase both rainfall frequency and intensity, and are most effective in the correction of rainfall under dry to normal surface condition while limited/negative improvement is seen over wet/saturated surfaces. Errors from soil moisture, mixed among the real signal, may generate a false rainfall signal approximately 2 mm day−1 and thus lower the precipitation accuracy after adjustment.


2019 ◽  
Vol 11 (24) ◽  
pp. 2936 ◽  
Author(s):  
Yagmur Derin ◽  
Emmanouil Anagnostou ◽  
Alexis Berne ◽  
Marco Borga ◽  
Brice Boudevillain ◽  
...  

The great success of the Tropical Rainfall Measuring Mission (TRMM) and its successor Global Precipitation Measurement (GPM) has accelerated the development of global high-resolution satellite-based precipitation products (SPP). However, the quantitative accuracy of SPPs has to be evaluated before using these datasets in water resource applications. This study evaluates the following GPM-era and TRMM-era SPPs based on two years (2014–2015) of reference daily precipitation data from rain gauge networks in ten mountainous regions: Integrated Multi-SatellitE Retrievals for GPM (IMERG, version 05B and version 06B), National Oceanic and Atmospheric Administration (NOAA)/Climate Prediction Center Morphing Method (CMORPH), Global Satellite Mapping of Precipitation (GSMaP), and Multi-Source Weighted-Ensemble Precipitation (MSWEP), which represents a global precipitation data-blending product. The evaluation is performed at daily and annual temporal scales, and at 0.1 deg grid resolution. It is shown that GSMaPV07 surpass the performance of IMERGV06B Final for almost all regions in terms of systematic and random error metrics. The new orographic rainfall classification in the GSMaPV07 algorithm is able to improve the detection of orographic rainfall, the rainfall amounts, and error metrics. Moreover, IMERGV05B showed significantly better performance, capturing the lighter and heavier precipitation values compared to IMERGV06B for almost all regions due to changes conducted to the morphing, where motion vectors are derived using total column water vapor for IMERGV06B.


2016 ◽  
Vol 20 (7) ◽  
pp. 2827-2840 ◽  
Author(s):  
Delphine J. Leroux ◽  
Thierry Pellarin ◽  
Théo Vischel ◽  
Jean-Martial Cohard ◽  
Tania Gascon ◽  
...  

Abstract. Precipitation forcing is usually the main source of uncertainty in hydrology. It is of crucial importance to use accurate forcing in order to obtain a good distribution of the water throughout the basin. For real-time applications, satellite observations allow quasi-real-time precipitation monitoring like the products PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks, TRMM (Tropical Rainfall Measuring Mission) or CMORPH (CPC (Climate Prediction Center) MORPHing). However, especially in West Africa, these precipitation satellite products are highly inaccurate and the water amount can vary by a factor of 2. A post-adjusted version of these products exists but is available with a 2 to 3 month delay, which is not suitable for real-time hydrologic applications. The purpose of this work is to show the possible synergy between quasi-real-time satellite precipitation and soil moisture by assimilating the latter into a hydrological model. Soil Moisture Ocean Salinity (SMOS) soil moisture is assimilated into the Distributed Hydrology Soil Vegetation Model (DHSVM) model. By adjusting the soil water content, water table depth and streamflow simulations are much improved compared to real-time precipitation without assimilation: soil moisture bias is decreased even at deeper soil layers, correlation of the water table depth is improved from 0.09–0.70 to 0.82–0.87, and the Nash coefficients of the streamflow go from negative to positive. Overall, the statistics tend to get closer to those from the reanalyzed precipitation. Soil moisture assimilation represents a fair alternative to reanalyzed rainfall products, which can take several months before being available, which could lead to a better management of available water resources and extreme events.


2010 ◽  
Vol 49 (5) ◽  
pp. 1044-1051 ◽  
Author(s):  
Feyera A. Hirpa ◽  
Mekonnen Gebremichael ◽  
Thomas Hopson

Abstract This study focuses on the evaluation of 3-hourly, 0.25° × 0.25°, satellite-based precipitation products: the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42RT, the NOAA/Climate Prediction Center morphing technique (CMORPH), and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN). CMORPH is primarily microwave based, 3B42RT is primarily microwave based when microwave data are available and infrared based when microwave data are not available, and PERSIANN is primarily infrared based. The results show that 1) 3B42RT and CMORPH give similar rainfall fields (in terms of bias, spatial structure, elevation-dependent trend, and distribution function), which are different from PERSIANN rainfall fields; 2) PERSIANN does not show the elevation-dependent trend observed in rain gauge values, 3B42RT, and CMORPH; and 3) PERSIANN considerably underestimates rainfall in high-elevation areas.


2016 ◽  
Vol 17 (4) ◽  
pp. 1101-1117 ◽  
Author(s):  
Viviana Maggioni ◽  
Patrick C. Meyers ◽  
Monique D. Robinson

Abstract A great deal of expertise in satellite precipitation estimation has been developed during the Tropical Rainfall Measuring Mission (TRMM) era (1998–2015). The quantification of errors associated with satellite precipitation products (SPPs) is crucial for a correct use of these datasets in hydrological applications, climate studies, and water resources management. This study presents a review of previous work that focused on validating SPPs for liquid precipitation during the TRMM era through comparisons with surface observations, both in terms of mean errors and detection capabilities across different regions of the world. Several SPPs have been considered: TMPA 3B42 (research and real-time products), CPC morphing technique (CMORPH), Global Satellite Mapping of Precipitation (GSMaP; both the near-real-time and the Motion Vector Kalman filter products), PERSIANN, and PERSIANN–Cloud Classification System (PERSIANN-CCS). Topography, seasonality, and climatology were shown to play a role in the SPP’s performance, especially in terms of detection probability and bias. Regions with complex terrain exhibited poor rain detection and magnitude-dependent mean errors; low probability of detection was reported in semiarid areas. Winter seasons, usually associated with lighter rain events, snow, and mixed-phase precipitation, showed larger biases.


2021 ◽  
Vol 13 (4) ◽  
pp. 826 ◽  
Author(s):  
Harold Llauca ◽  
Waldo Lavado-Casimiro ◽  
Karen León ◽  
Juan Jimenez ◽  
Kevin Traverso ◽  
...  

This study investigates the applicability of Satellite Precipitation Products (SPPs) in near real-time for the simulation of sub-daily runoff in the Vilcanota River basin, located in the southeastern Andes of Peru. The data from rain gauge stations are used to evaluate the quality of Integrated Multi-satellite Retrievals for GPM–Early (IMERG-E), Global Satellite Mapping of Precipitation–Near Real-Time (GSMaP-NRT), Climate Prediction Center Morphing Method (CMORPH), and HydroEstimator (HE) at the pixel-station level; and these SPPs are used as meteorological inputs for the hourly hydrological modeling. The GR4H model is calibrated with the hydrometric station of the longest record, and model simulations are also verified at one station upstream and two stations downstream of the calibration point. Comparing the sub-daily precipitation data observed, the results show that the IMERG-E product generally presents higher quality, followed by GSMaP-NRT, CMORPH, and HE. Although the SPPs present positive and negative biases, ranging from mild to moderate, they do represent the diurnal and seasonal variability of the hourly precipitation in the study area. In terms of the average of Kling-Gupta metric (KGE), the GR4H_GSMaP-NRT’ yielded the best representation of hourly discharges (0.686), followed by GR4H_IMERG-E’ (0.623), GR4H_Ensemble-Mean (0.617) and GR4H_CMORPH’ (0.606), and GR4H_HE’ (0.516). Finally, the SPPs showed a high potential for monitoring floods in the Vilcanota basin in near real-time at the operational level. The results obtained in this research are very useful for implementing flood early warning systems in the Vilcanota basin and will allow the monitoring and short-term hydrological forecasting of floods by the Peruvian National Weather and Hydrological Service.


Sign in / Sign up

Export Citation Format

Share Document