scholarly journals Prediction of Wheat Grain Protein by Coupling Multisource Remote Sensing Imagery and ECMWF Data

2020 ◽  
Vol 12 (8) ◽  
pp. 1349 ◽  
Author(s):  
Xiaobin Xu ◽  
Cong Teng ◽  
Yu Zhao ◽  
Ying Du ◽  
Chunqi Zhao ◽  
...  

Industrialization production with high quality and effect on winter is an important measure for accelerating the shift from increasing agricultural production to improving quality in terms of grain protein content (GPC). Remote sensing technology achieved the GPC prediction. However, large deviations in interannual expansion and regional transfer still exist. The present experiment was carried out in wheat producing areas of Beijing (BJ), Renqiu (RQ), Quzhou, and Jinzhou in Hebei Province. First, the spectral consistency of Landsat 8 Operational Land Imager (LS8) and RapidEye (RE) was compared with Sentinel-2 (S2) satellites at the same ground point in the same period. The GPC prediction model was constructed by coupling the vegetation index with the meteorological data obtained by the European Center for Medium-range Weather Forecasts using hierarchical linear model (HLM) method. The prediction and spatial expansion of regional GPC were validated. Results were as follows: (1) Spectral information calculated from S2 imagery were highly consistent with LS8 (R2 = 1.00) and RE (R2 = 0.99) imagery, which could be jointly used for GPC modeling. (2) The predicted GPC by using the HLM method (R2 = 0.524) demonstrated higher accuracy than the empirical linear model (R2 = 0.286) and showed higher improvements across inter-annual and regional scales. (3) The GPC prediction results of the verification samples in RQ, BJ, Xiaotangshan (XTS) in 2018, and XTS in 2019 were ideal with root mean square errors of 0.61%, 1.13%, 0.91%, and 0.38%, and relative root mean square error of 4.11%, 6.83%, 6.41%, and 2.58%, respectively. This study has great application potential for regional and inter-annual quality prediction.

2020 ◽  
Vol 12 (11) ◽  
pp. 1814
Author(s):  
Phamchimai Phan ◽  
Nengcheng Chen ◽  
Lei Xu ◽  
Zeqiang Chen

Tea is a cash crop that improves the quality of life for people in the Tanuyen District of Laichau Province, Vietnam. Tea yield, however, has stagnated in recent years, due to changes in temperature, precipitation, the age of the tea bushes, and diseases. Developing an approach for monitoring tea bushes by remote sensing and Geographic Information Systems (GIS) might be a way to alleviate this problem. Using multi-temporal remote sensing data, the paper details an investigation of the changes in tea health and yield forecasting through the normalized difference vegetation index (NDVI). In this study, we used NDVI as a support tool to demonstrate the temporal and spatial changes in NDVI through the extract tea NDVI value and calculate the mean NDVI value. The results of the study showed that the minimum NDVI value was 0.42 during January 2013 and February 2015 and 2016. The maximum NDVI value was in August 2015 and June 2017. We indicate that the linear relationship between NDVI value and mean temperature was strong with R 2 = 0.79 Our results confirm that the combination of meteorological data and NDVI data can achieve a high performance of yield prediction. Three models to predict tea yield were conducted: support vector machine (SVM), random forest (RF), and the traditional linear regression model (TLRM). For period 2009 to 2018, the prediction tea yield by the RF model was the best with a R 2 = 0.73 , by SVM it was 0.66, and 0.57 with the TLRM. Three evaluation indicators were used to consider accuracy: the coefficient of determination ( R 2 ), root-mean-square error (RMSE), and percentage error of tea yield (PETY). The highest accuracy for the three models was in 2015 with a R 2 ≥ 0.87, RMSE < 50 kg/ha, and PETY less 3% error. In the other years, the prediction accuracy was higher in the SVM and RF models. Meanwhile, the RF algorithm was better than PETY (≤10%) and the root mean square error for this algorithm was significantly less (≤80 kg/ha). RMSE and PETY showed relatively good values in the TLRM model with a RMSE from 80 to 100 kg/ha and a PETY from 8 to 15%.


2019 ◽  
Vol 21 (2) ◽  
pp. 1310-1320
Author(s):  
Cícera Celiane Januário da Silva ◽  
Vinicius Ferreira Luna ◽  
Joyce Ferreira Gomes ◽  
Juliana Maria Oliveira Silva

O objetivo do presente trabalho é fazer uma comparação entre a temperatura de superfície e o Índice de Vegetação por Diferença Normalizada (NDVI) na microbacia do rio da Batateiras/Crato-CE em dois períodos do ano de 2017, um chuvoso (abril) e um seco (setembro) como também analisar o mapa de diferença de temperatura nesses dois referidos períodos. Foram utilizadas imagens de satélite LANDSAT 8 (banda 10) para mensuração de temperatura e a banda 4 e 5 para geração do NDVI. As análises demonstram que no mês de abril a temperatura da superfície variou aproximadamente entre 23.2ºC e 31.06ºC, enquanto no mês correspondente a setembro, os valores variaram de 25°C e 40.5°C, sendo que as maiores temperaturas foram encontradas em locais com baixa densidade de vegetação, de acordo com a carta de NDVI desses dois meses. A maior diferença de temperatura desses dois meses foi de 14.2°C indicando que ocorre um aumento da temperatura proporcionado pelo período que corresponde a um dos mais secos da região, diferentemente de abril que está no período de chuvas e tem uma maior umidade, presença de vegetação e corpos d’água que amenizam a temperatura.Palavras-chave: Sensoriamento Remoto; Vegetação; Microbacia.                                                                                  ABSTRACTThe objective of the present work is to compare the surface temperature and the Normalized Difference Vegetation Index (NDVI) in the Batateiras / Crato-CE river basin in two periods of 2017, one rainy (April) and one (September) and to analyze the temperature difference map in these two periods. LANDSAT 8 (band 10) satellite images were used for temperature measurement and band 4 and 5 for NDVI generation. The analyzes show that in April the surface temperature varied approximately between 23.2ºC and 31.06ºC, while in the month corresponding to September, the values ranged from 25ºC and 40.5ºC, and the highest temperatures were found in locations with low density of vegetation, according to the NDVI letter of these two months. The highest difference in temperature for these two months was 14.2 ° C, indicating that there is an increase in temperature provided by the period that corresponds to one of the driest in the region, unlike April that is in the rainy season and has a higher humidity, presence of vegetation and water bodies that soften the temperature.Key-words: Remote sensing; Vegetation; Microbasin.RESUMENEl objetivo del presente trabajo es hacer una comparación entre la temperatura de la superficie y el Índice de Vegetación de Diferencia Normalizada (NDVI) en la cuenca Batateiras / Crato-CE en dos períodos de 2017, uno lluvioso (abril) y uno (Septiembre), así como analizar el mapa de diferencia de temperatura en estos dos períodos. Las imágenes de satélite LANDSAT 8 (banda 10) se utilizaron para la medición de temperatura y las bandas 4 y 5 para la generación de NDVI. Los análisis muestran que en abril la temperatura de la superficie varió aproximadamente entre 23.2ºC y 31.06ºC, mientras que en el mes correspondiente a septiembre, los valores oscilaron entre 25 ° C y 40.5 ° C, y las temperaturas más altas se encontraron en lugares con baja densidad de vegetación, según el gráfico NDVI de estos dos meses. La mayor diferencia de temperatura de estos dos meses fue de 14.2 ° C, lo que indica que hay un aumento en la temperatura proporcionada por el período que corresponde a uno de los más secos de la región, a diferencia de abril que está en la temporada de lluvias y tiene una mayor humedad, presencia de vegetación y cuerpos de agua que suavizan la temperatura.Palabras clave: Detección remota; vegetación; Cuenca.


2021 ◽  
Vol 13 (9) ◽  
pp. 1630
Author(s):  
Yaohui Zhu ◽  
Guijun Yang ◽  
Hao Yang ◽  
Fa Zhao ◽  
Shaoyu Han ◽  
...  

With the increase in the frequency of extreme weather events in recent years, apple growing areas in the Loess Plateau frequently encounter frost during flowering. Accurately assessing the frost loss in orchards during the flowering period is of great significance for optimizing disaster prevention measures, market apple price regulation, agricultural insurance, and government subsidy programs. The previous research on orchard frost disasters is mainly focused on early risk warning. Therefore, to effectively quantify orchard frost loss, this paper proposes a frost loss assessment model constructed using meteorological and remote sensing information and applies this model to the regional-scale assessment of orchard fruit loss after frost. As an example, this article examines a frost event that occurred during the apple flowering period in Luochuan County, Northwestern China, on 17 April 2020. A multivariable linear regression (MLR) model was constructed based on the orchard planting years, the number of flowering days, and the chill accumulation before frost, as well as the minimum temperature and daily temperature difference on the day of frost. Then, the model simulation accuracy was verified using the leave-one-out cross-validation (LOOCV) method, and the coefficient of determination (R2), the root mean square error (RMSE), and the normalized root mean square error (NRMSE) were 0.69, 18.76%, and 18.76%, respectively. Additionally, the extended Fourier amplitude sensitivity test (EFAST) method was used for the sensitivity analysis of the model parameters. The results show that the simulated apple orchard fruit number reduction ratio is highly sensitive to the minimum temperature on the day of frost, and the chill accumulation and planting years before the frost, with sensitivity values of ≥0.74, ≥0.25, and ≥0.15, respectively. This research can not only assist governments in optimizing traditional orchard frost prevention measures and market price regulation but can also provide a reference for agricultural insurance companies to formulate plans for compensation after frost.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 885
Author(s):  
Sergio Ghidini ◽  
Luca Maria Chiesa ◽  
Sara Panseri ◽  
Maria Olga Varrà ◽  
Adriana Ianieri ◽  
...  

The present study was designed to investigate whether near infrared (NIR) spectroscopy with minimal sample processing could be a suitable technique to rapidly measure histamine levels in raw and processed tuna fish. Calibration models based on orthogonal partial least square regression (OPLSR) were built to predict histamine in the range 10–1000 mg kg−1 using the 1000–2500 nm NIR spectra of artificially-contaminated fish. The two models were then validated using a new set of naturally contaminated samples in which histamine content was determined by conventional high-performance liquid chromatography (HPLC) analysis. As for calibration results, coefficient of determination (r2) > 0.98, root mean square of estimation (RMSEE) ≤ 5 mg kg−1 and root mean square of cross-validation (RMSECV) ≤ 6 mg kg−1 were achieved. Both models were optimal also in the validation stage, showing r2 values > 0.97, root mean square errors of prediction (RMSEP) ≤ 10 mg kg−1 and relative range error (RER) ≥ 25, with better results showed by the model for processed fish. The promising results achieved suggest NIR spectroscopy as an implemental analytical solution in fish industries and markets to effectively determine histamine amounts.


2018 ◽  
Vol 10 (2) ◽  
pp. 150
Author(s):  
Hongxing Yao ◽  
Abdul Rashid Abdul Rahaman

This paper uses a SETAR model to determine threshold(s) in the RMB/US$ exchange rate from 1981 to 2016 using monthly data. Also, it compares the forecast performance of the univariate nonlinear model to a univariate linear model. We further analyze the forecast performance of the SETAR model to a multivariate linear model, e.g., a Reduced-form VAR. In addition, the research assesses the claim by Boero and Marrocu (2002) that the root mean square error masks the superiority of the nonlinear models.We found five significant thresholds in the RMB/US$ exchange rate, and this result reflects five major episodes of policy reforms or structural changes in the renminbi exchange rates from the period 1981 to 2016. We also found that the univariate nonlinear model out performs both the univariate and multivariate linear models in predicting the exchange rate movements. This finding is consistent with the results in Kyei and Gyamfi (2016), Boero and Marrocu (2002), Krager and Kugler (1993), Peel and Speight (1994) and Chappell et al. (1996). Furthermore, we did not find any evidence of the root mean square error masking the superiority of the nonlinear model.


Symmetry ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 23
Author(s):  
Yuping Li ◽  
Brady K. Quinn ◽  
Johan Gielis ◽  
Yirong Li ◽  
Peijian Shi

Many natural radial symmetrical shapes (e.g., sea stars) follow the Gielis equation (GE) or its twin equation (TGE). A supertriangle (three triangles arranged around a central polygon) represents such a shape, but no study has tested whether natural shapes can be represented as/are supertriangles or whether the GE or TGE can describe their shape. We collected 100 pieces of Koelreuteria paniculata fruit, which have a supertriangular shape, extracted the boundary coordinates for their vertical projections, and then fitted them with the GE and TGE. The adjusted root mean square errors (RMSEadj) of the two equations were always less than 0.08, and >70% were less than 0.05. For 57/100 fruit projections, the GE had a lower RMSEadj than the TGE, although overall differences in the goodness of fit were non-significant. However, the TGE produces more symmetrical shapes than the GE as the two parameters controlling the extent of symmetry in it are approximately equal. This work demonstrates that natural supertriangles exist, validates the use of the GE and TGE to model their shapes, and suggests that different complex radially symmetrical shapes can be generated by the same equation, implying that different types of biological symmetry may result from the same biophysical mechanisms.


2019 ◽  
Author(s):  
Yan Liu ◽  
Caitlin McDonough MacKenzie ◽  
Richard B. Primack ◽  
Michael J. Hill ◽  
Xiaoyang Zhang ◽  
...  

Abstract. Greenup dates of the mountainous Acadia National Park, were monitored using remote sensing data (including Landsat 8 surface reflectances (at a 30 m spatial resolution) and VIIRS reflectances adjusted to a nadir view (gridded at a 500 m spatial resolution)) during the 2013–2016 growing seasons. Ground-level leaf-out monitoring in the areas alongside the north-south-oriented hiking trails on three of the park's tallest mountains (466 m, 418 m, and 380 m) was used to evaluate satellite derived greenup dates in this study. While the 30 m resolution would be expected to provide a better scale for phenology detection in this mountainous region than the 500 m resolution, the daily temporal resolution of the 500 m data would be expected to offer vastly superior monitoring of the rapid variations experienced during vegetation greenup along elevational gradients. Therefore, the greenup dates derived from the Landsat 8 Enhanced Vegetation Index (EVI) data, augmented with Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) simulated EVI values, does provide more spatial details than VIIRS data alone and agree well with field monitored leaf out dates. Satellite derived greenup dates from the 30 m of Acadia National Park vary among different elevational zones, although the date of greenup is not always the most advanced at the lowest elevation. This indicates that the spring phenology is not only determined by microclimates associated with different elevations in this mountainous area, but is also possibly affected by the species mixture, localized temperatures, and other factors in Acadia.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1599
Author(s):  
Linshan Tan ◽  
Kaiyuan Zheng ◽  
Qiangqiang Zhao ◽  
Yanjuan Wu

Understanding the spatial and temporal variations of evapotranspiration (ET) is vital for water resources planning and management and drought monitoring. The development of a satellite remote sensing technique is described to provide insight into the estimation of ET at a regional scale. In this study, the Surface Energy Balance Algorithm for Land (SEBAL) was used to calculate the actual ET on a daily scale from Landsat-8 data and daily ground-based meteorological data in the upper reaches of Huaihe River on 20 November 2013, 16 April 2015 and 23 March 2018. In order to evaluate the performance of the SEBAL model, the daily SEBAL ET (ETSEBAL) was compared against the daily reference ET (ET0) from four theoretical methods: the Penman-Monteith (P-M), Irmak-Allen (I-A), the Turc, and Jensen-Haise (J-H) method, the ETMOD16 product from the MODerate Resolution Imaging Spectrometer (MOD16) and the ETVIC from Variable Infiltration Capacity Model (VIC). A linear regression equation and statistical indices were used to model performance evaluation. The results showed that the daily ETSEBAL correlated very well with the ET0, ETMOD16, and ETVIC, and bias between the ETSEBAL with them was less than 1.5%. In general, the SEBAL model could provide good estimations in daily ET over the study region. In addition, the spatial-temporal distribution of ETSEBAL was explored. The variation of ETSEBAL was significant in seasons with high values during the growth period of vegetation in March and April and low values in November. Spatially, the daily ETSEBAL values in the mountain area were much higher than those in the plain areas over the study region. The variability of ETSEBAL in this study area was positively correlated with elevation and negatively correlated with surface reflectance, which implies that elevation and surface reflectance are the important factors for predicting ET in this study area.


2021 ◽  
Vol 25 (9) ◽  
pp. 30-37
Author(s):  
N.N. Sliusar ◽  
A.P. Belousova ◽  
G.M. Batrakova ◽  
R.D. Garifzyanov ◽  
M. Huber-Humer ◽  
...  

The possibilities of using remote sensing of the Earth data to assess the formation of phytocenoses at reclaimed dumps and landfills are presented. The objects of study are landfills and dumps in the Perm Territory, which differed from each other in the types and timing of reclamation work. The state of the vegetation cover on the reclaimed and self-overgrowing objects was compared with the reference plots with naturally formed herbage of zonal meadow vegetation. The process of reclamation of the territory of closed landfills was assessed by the presence and homogeneity of the vegetation layer and by the values of the vegetation index NDVI. To identify the dynamics of changes in the vegetation cover, we used multi-temporal satellite images from the open resources of Google Earth and images in the visible and infrared ranges of the Landsat-5/TM and Landsat-8/OLI satellites. It is shown that the data of remote sensing of the Earth, in particular the analysis of vegetation indices, can be used to assess the dynamics of overgrowing of territories of reclaimed waste disposal facilities, as well as an additional and cost-effective method for monitoring the restoration of previously disturbed territories.


2020 ◽  
Vol 12 (17) ◽  
pp. 2671
Author(s):  
Carlo Scotto ◽  
Dario Sabbagh

A total of 4991 ionograms recorded from April 1997 to December 2017 by the Millstone Hill Digisonde (42.6°N, 288.5°E) were considered, with simultaneous Ne(h)[ISR] profiles recorded by the co-located Incoherent Scatter Radar (ISR). The entire ionogram dataset was scaled with both the Autoscala and ARTIST programs. The reliability of the hmF2 values obtained by ARTIST and Autoscala was assessed using the corresponding ISR values as a reference. Average errors Δ and the root mean square errors RMSE were computed for the whole dataset. Data analysis shows that both the Autoscala and ARTIST systems tend to underestimate hmF2 values with |Δ| in all cases less than 10 km. For high magnetic activity ARTIST offers better accuracy than Autoscala, as evidenced by RMSE[ARTIST] < RMSE[Autoscala], under both daytime and nighttime conditions, and considering all hours of the day. Conversely, under low and medium magnetic activity Autoscala tends to estimate hmF2 more accurately than the ARTIST system for both daytime and nighttime conditions, when RMSE[Autoscala] < RMSE[ARTIST]. However, RMSE[Autoscala] slightly exceeds RMSE[ARTIST] for the day as a whole. RMSE values are generally substantial (RMSE > 16 km in all cases), which places a limit on the results obtainable with real-time models that ingest ionosonde data.


Sign in / Sign up

Export Citation Format

Share Document