scholarly journals Coastal Current Intrusions from Satellite Altimetry

2020 ◽  
Vol 12 (22) ◽  
pp. 3686
Author(s):  
Daniele Casella ◽  
Marco Meloni ◽  
Anne A. Petrenko ◽  
Andrea M. Doglioli ◽  
Jerome Bouffard

The use of satellite-based data in coastal regions for the monitoring of fine-scale ocean dynamics, impacting marine ecosystems, is a difficult challenge. A random forest algorithm to detect slope current intrusions into the Gulf of Lion, Mediterranean Sea, has been developed using both improved coastal altimetry data and 10 year-long numerical simulations. The results have been compared to an independent dataset of in situ measurements from a bottom-moored Acoustic Doppler Current Profiler. The algorithm results are very promising: 93% of slope current intrusions have been correctly identified, and the number of false alarms is moderate. The dependence of the algorithm on several environmental factors is discussed in the paper. From the oceanographic point of view, our results confirm the strong impacts of horizontal winds in the dynamic of the intrusion events in the study area. Our methodology combining numerical modeling, in situ data and new machine-learning tools proves effective in improving the capabilities of ocean remote sensing in coastal areas.

2021 ◽  
Vol 29 (1) ◽  
Author(s):  
Henry Munandar Manik ◽  
Randi Firdaus

Tidung Island, located near Jakarta Bay, is a tourism and conservation area. It is necessary to keep these seawaters unpolluted. To calculate the level of pollution, it is necessary to know the sediment concentration. Quantifying concentration suspended sediment is important for knowledge of sediment transport. Researchers usually use water sample analysis and optical method for quantifying suspended sediment in seawater. Less accuracies of these methods are due to under sample of seawater and the existence of biological fouling. One promising method to measure concentration of suspended sediment is using Acoustic Doppler Current Profiler (ADCP). ADCP is usually used by oceanographer and hydrographer to measure ocean current. In this research, ADCP with 300 kHz operating frequency was used effectively to measure suspended sediment concentration (SSC) and ocean current simultaneously. The echo intensity received from suspended sediment was computed using sonar equations to quantify SSC. The empirical equation between echo intensity and SSC was found. The SSC value obtained by ADCP was also compared with in situ measurement. The result showed that quantified SSC value obtained by ADCP was nearly equal with SSC obtained from in situ measurement with coefficient correlation of 0.98. The high concentration ranged from 55 mg/L to 80 mg/L at the surface layer to a depth 12 m, moderate concentration ranged from 45 mg/L to 55 mg/L at a depth 12 m to 40 m, and low concentration less than 45 mg/L at a depth greater than 40 m. The distribution of SSC was correlated with ocean current condition. In small currents, suspended solids will settle faster so that the concentration in the water column will decrease. Conversely, if the velocity is high, suspended solids will continue to float carried by the current in the water column so that the concentration is high.


2017 ◽  
Vol 65 (4) ◽  
pp. 325-332 ◽  
Author(s):  
Ireneusz Laks ◽  
Krzysztof Szoszkiewicz ◽  
Tomasz Kałuża

AbstractThe analysis of in situ measurements of velocity distribution in the floodplain of the lowland river has been carried out. The survey area was located on a bypass channel of the Warta River (West of Poland) which is filled with water only in case of flood waves. The floodplain is covered by grassland and reed marsh habitats. The velocity measurements were performed with an acoustic Doppler current profiler (ADCP) in a cross-section with a bed reinforced with concrete slabs. The measured velocities have reflected the differentiated impact of various vegetation types on the loss of water flow energy. The statistical analyses have proven a relationship between the local velocities and the type of plant communities.


2021 ◽  
Vol 9 ◽  
Author(s):  
William P. Meurer ◽  
John Blum ◽  
Greg Shipman

The role of methane as a green-house gas is widely recognized and has sparked considerable efforts to quantify the contribution from natural methane sources including submarine seeps. A variety of techniques and approaches have been directed at quantifying methane fluxes from seeps from just below the sediment water interface all the way to the ocean atmosphere interface. However, there have been no systematic efforts to characterize the amount and distribution of dissolved methane around seeps. This is critical to understanding the fate of methane released from seeps and its role in the submarine environment. Here we summarize the findings of two field studies of the Bush Hill mud volcano (540 m water depth) located in the Gulf of Mexico. The studies were carried out using buoyancy driven gliders equipped with methane sensors for near real time in situ detection. One glider was equipped with an Acoustic Doppler Current Profiler (ADCP) for simultaneous measurement of currents and methane concentrations. Elevated methane concentrations in the water column were measured as far away as 2 km from the seep source and to a height of about 100 m above the seep. Maximum observed concentrations were ∼400 nM near the seep source and decreased away steadily in all directions from the source. Weak and variable currents result in nearly radially symmetric dispersal of methane from the source. The persistent presence of significant methane concentrations in the water column points to a persistent methane seepage at the seafloor, that has implications for helping stabilize exposed methane hydrates. Elevated methane concentrations in the water column, at considerable distances away from seeps potentially support a much larger methane-promoted biological system than is widely appreciated.


Ocean Science ◽  
2020 ◽  
Vol 16 (3) ◽  
pp. 575-591
Author(s):  
Ivan Manso-Narvarte ◽  
Erick Fredj ◽  
Gabriel Jordà ◽  
Maristella Berta ◽  
Annalisa Griffa ◽  
...  

Abstract. The effective monitoring and understanding of the dynamics of coastal currents is crucial for the development of environmentally sustainable coastal activities in order to preserve marine ecosystems as well as to support marine and navigation safety. This need is driving the set-up of a growing number of multiplatform operational observing systems, aiming for the continuous monitoring of the coastal ocean. A significant percentage of the existing observatories is equipped with land-based high-frequency radars (HFRs), which provide real-time currents with high spatio-temporal coverage and resolutions. Several approaches have been used in the past to expand the surface current velocity measurements provided by HFR to subsurface levels, since this can expand the application of the technology to other fields, like marine ecology or fisheries. The possibility of obtaining 3D velocity current fields from the combination of data from HFRs with complementary data, such as the velocity current profiles provided by in situ acoustic Doppler current profiler (ADCP) moorings is explored here. To that end, two different methods to reconstruct the 3D current velocity fields are assessed by a standard approach conceptually similar to OSSEs (observing system simulation experiments), where 3D numerical simulations are used as true ocean in order to evaluate the performance of the data-reconstruction methods. The observations of currents from a HFR and ADCP moorings are emulated by extracting the corresponding data from the 3D true ocean, and used as input for the methods. Then, the 3D reconstructed fields (outputs of the methods) are compared to the true ocean to assess the skills of the data-reconstruction methods. These methods are based on different approaches: on the one hand, the reduced order optimal interpolation uses an approximation to the velocity covariances (which can be obtained from historical data or a realistic numerical simulation) and on the other hand, the discrete cosine transform penalized least square is based on penalized least squares regression that balances fidelity to the data and smoothness of the solution. This study, which is based on the configuration of a real observatory located in the south-eastern Bay of Biscay (SE-BoB), is a first step towards the application of the data-reconstruction methods to real data, since it explores their skills and limitations. In the SE-BoB, where the coastal observatory includes a long-range HFR and two ADCP moorings inside the HFR footprint area, the results show satisfactory 3D reconstructions with mean spatial (for each depth level) errors between 0.55 and 7 cm s−1 for the first 150 m depth and mean relative errors of 0.07–1.2 times the rms value for most of the cases. The data-reconstruction methods perform better in well-sampled areas, and both show promising skills for the 3D reconstruction of currents as well as for the computation of new operational products integrating complementary observations, broadening the applications of the in situ observational data in the study area.


2020 ◽  
Author(s):  
Rosemary Morrow ◽  
Lee-Lueng Fu

<p>The future international Surface Water and Ocean Topography (SWOT) Mission, planned for launch in late 2021, will make high-resolution 2D observations of sea-surface height using SAR radar interferometric techniques. SWOT will map the global and coastal oceans up to 77.6° latitude every 21 days over a swath of 120 km (20 km nadir gap). Today’s 2D mapped altimeter data can resolve ocean scales of 150 km wavelength whereas the SWOT measurement will extend our 2D observations down to 15-30 km, depending on sea state. SWOT will offer new opportunities to observe the oceanic dynamic processes at these smaller scales, that are important in the generation and dissipation of ocean kinetic energy, and are one of the main gateways connecting the surface to the ocean interior. Active vertical exchanges linked to these scales have impacts on the local and global budgets of heat and carbon, and on nutrients for biogeochemical cycles.</p><p>SWOT’s unprecedented 2D ocean SSH observations include “balanced” geostrophic eddy motions and high-frequency internal tides and internal waves. SWOT will provide global observations of the 2D structure of these phenomena, enabling us to learn more about their interactions, and helping us to interpret what is currently observed in 1D with conventional altimetry. Yet this mix of balanced and unbalanced motions is a challenge for calculating geostrophic currents directly from SSH or for reconstructing the 4D upper ocean circulation. At these small scales, the ocean dynamics evolve rapidly, and even with SWOT’s 2D SSH images, one satellite cannot observe the temporal evolution of these processes. SWOT data will need to be combined with other satellite and in-situ data and models to better understand the upper ocean 4D circulation (x,y,z,t) over the next decade. SWOT’s new technology will be a forerunner for the future altimetric observing system.</p><p>We will present recent progress in understanding the ocean dynamics contributing to fine-scale sea-surface height, including high-frequency processes such as internal tides, from 1D alongtrack altimetry, SAR data, in-situ data and models. We will also discuss the specific problems of validating the SWOT 2D small, rapid dynamics with in-situ data and other satellite data. </p>


2021 ◽  
Author(s):  
Madelaine Gamble Rosevear ◽  
Benjamin Keith Galton-Fenzi ◽  
Craig Stevens

Abstract. Ocean driven melting of Antarctic ice shelves is causing grounded ice to be lost from the Antarctic continent at an accelerating rate. However, the ocean processes governing ice shelf melting are not well understood, contributing to uncertainty in projections of Antarctica's contribution to sea level. Here, we analyse oceanographic data and in situ measurements of ice shelf melt collected from an instrumented mooring beneath the centre of the Amery Ice Shelf, East Antarctica. This is the first direct measurement of basal melting from the Amery Ice Shelf, and was made through the novel application of an upwards-facing Acoustic Doppler Current Profiler (ADCP). ADCP data were also used to map a region of the ice base, revealing a steep topographic feature or “scarp” in the ice with vertical and horizontal scales of ~20 m and ~40 m respectively. The annually-averaged ADCP-derived melt rate of 0.51 ± 0.18 m yr−1 is consistent with previous modelling results and glaciological estimates, and there is significant seasonal variation in melting with a maximum in May and a minimum in September. Melting is driven by temperatures ~0.2 °C above the local freezing point and background and tidal currents, which have typical speeds of ~3.0 cm s−1 and 10.0 cm s−1 respectively. We use the coincident measurements of ice shelf melt and oceanographic forcing to evaluate parameterisations of ice-ocean interactions, and find that parameterisations in which there is an explicit dependence of the melt rate on current speed beneath the ice tend to overestimate the local melt rate at AM06 by between 200 % and 400 %, depending on the choice of drag coefficient. A convective parameterisation in which melting is a function of the slope of the ice base is also evaluated and is shown to under-predict melting by 20 % at this site. Using available observations from other ice shelves, we show that a common current speed-dependent parameterisation overestimates melting at all but the coldest, most energetic cavity conditions.


2021 ◽  
Vol 9 (9) ◽  
pp. 933
Author(s):  
Sergey G. Demyshev ◽  
Olga A. Dymova ◽  
Natalia V. Markova ◽  
Evgenia A. Korshenko ◽  
Maksim V. Senderov ◽  
...  

Numerical simulation results of the Black Sea circulation obtained by four ocean dynamics models are compared to each other and to in situ data in order to determine the features of the Black Sea deep-water circulation such as deep-water undercurrents. The year 2011 is chosen as the test period due to the availability of deep-sea observations, including ARGO profiles and ADCP current velocities. Validation of the simulation results is based on comparison with the temperature and salinity measured by the ARGO floats. Anticyclonic currents (undercurrents) under the cyclonic Rim Current are detected by the results of all numerical models near the North Caucasian coast. The main characteristics of undercurrents are consistent with in situ data on current velocity up to a depth of 1000 m obtained by the Aqualog probe at the IO RAS test site near Gelendzhik in June 2011. The analysis of the spatio-temporal variability of the modeled salinity and velocity fields reveals that the most probable origin of the undercurrents is the horizontal density gradient of seawater in the region.


2020 ◽  
Vol 37 (4) ◽  
pp. 533-552
Author(s):  
Trevor Harrison ◽  
Kristen M. Thyng ◽  
Brian Polagye

AbstractHigh-resolution, four-dimensional mapping of currents in tidally dominated coastal settings can be conducted with a range of instrumentation. Here, we assess four approaches to data collection: an X-band radar, a stationary (bottom mounted) acoustic Doppler current profiler (ADCP), a mobile (vessel based) ADCP, and a swarm of Lagrangian floats. Using the output from a hydrodynamic simulation, a virtual field campaign was performed at 24 locations in Admiralty Inlet, Puget Sound, Washington, during spring and neap tidal exchanges. A reconstruction of the volumetric currents was generated for each platform every 15 min and evaluated against the true currents to assess accuracy over a horizontal extent of 400 m × 500 m at 5 m resolution and vertically through the entire water column (20–80 m) at 2 m resolution. Results demonstrate that, for this survey extent and resolution, a vessel-based ADCP survey is most accurate, followed closely by the float swarm. The overall performance hierarchy persists over most locations and times. Thus, if mapping currents at high resolution (<10 m) and short time scales (<1 day) is the primary scientific objective, vessel-based ADCP surveys are likely the best option. For longer-duration surveys, a combined deployment with a stationary ADCP and X-band radar system is the best choice. Last, if in situ measurements of scalar properties (e.g., salinity, temperature, dissolved oxygen) are also desired, float swarms can simultaneously sample these while surveying currents with accuracy comparable to mobile ADCPs.


Author(s):  
Pascal Bailly du Bois ◽  
Franck Dumas ◽  
Mehdi Morillon ◽  
Lucille Furgerot ◽  
Claire Voiseux ◽  
...  

This study presents an overview of the main hydrodynamic features of the Alderney Race strait based on in situ measurements and two-dimensional hydrodynamic model simulations. The strait encompasses a large amplitude of tidal properties (tidal range and tidal wave propagation) and particularly strong currents exceeding 5 m s −1 with associated counter currents and gyres. Variations in depth, sea bottom roughness, coastal topography and current orientation around the La Hague Cape provide access to a large variety of original hydrodynamic regimes. Some are revealed as locations with a 0.4 m drop in the mean sea level associated with strong average currents. A resonance effect associated with the offshore currents can also be observed close to the coasts. The ‘St Martin whistle’ occurs in a bay whose gyre centre oscillates with a reversal of the measured current every 5–7 min. The Alderney Race represents a particular area of interest for coastal hydrodynamic studies. The available in situ measurement datasets are rich with recordings of: sea levels; acoustic Doppler current profiler current profiles; surface radar currents; waves; dye experiments; surface and in-depth dissolved tracer surveys. Combined with hydrodynamic models, the complexity of this area can be further understood and knowledge of the hydrodynamic process and forcing parameters can be refined, which can be applied to other coastal areas. This article is part of the theme issue ‘New insights on tidal dynamics and tidal energy harvesting in the Alderney Race’.


Sign in / Sign up

Export Citation Format

Share Document