scholarly journals Altitude on Cartographic Materials and Its Correction According to New Measurement Techniques

2021 ◽  
Vol 13 (3) ◽  
pp. 444
Author(s):  
Kamil Maciuk ◽  
Michał Apollo ◽  
Joanna Mostowska ◽  
Tomáš Lepeška ◽  
Mojca Poklar ◽  
...  

Determining the correct height of mountain peaks is vital for tourism, but it is also important as a reference point for devices equipped with GPS (Global Positioning System), e.g., watches or car navigation systems. The peak altitude data are part of geographic and geodetic information. As more modern technologies and equipment become available, their precisions should increase. However, verification of peak heights is usually only conducted for the highest, well-known mountains—lower peaks or mountain passes are rarely verified. Therefore, this study focuses on an investigation of 12 altitude points on a section of the longest and most famous touristic trail in Poland (the Main Beskid Trail), located in the Orava–Żywiec Beskids Mts (Mountains). The aim of this research is to measure and verify the heights of the 12 selected mountain peaks, in addition to evaluating the chosen methods based on the quality of the obtained data and determining their suitability and opportunities for use in further research. Measurements were obtained at the most specific height points—on the 12 highest points of the summits. This study compares two modern measurement techniques: the global navigation satellite system (GNSS) and light detection and ranging (LiDAR). The obtained results were later compared with those widely used on the internet and in printed materials (period covered: 1884–2015). This analysis demonstrates that lesser-known objects are rarely the subject of remeasurement and significant altitude errors may occur, primarily because the heights originated from a source in the past when modern methods were not available. Our findings indicate that the heights of the peaks presented in cartographic materials are inaccurate. The assumed heights should be corrected by direct measurements using modern techniques.

2021 ◽  
Vol 13 (12) ◽  
pp. 2295
Author(s):  
Dominik Prochniewicz ◽  
Maciej Grzymala

Multipath is one of the major source of errors in precise Global Navigation Satellite System positioning. With the emergence of new navigation systems, such as Galileo, upgraded signals are progressively being used and are expected to provide greater resistance to the effects of multipath compared to legacy Global Positioning System (GPS) signals. The high quality of Galileo observations along with recent development of the Galileo space segment can therefore offer significant advantages to Galileo users in terms of the accuracy and reliability of positioning. The aim of this paper is to verify this hypothesis. The multipath impact was determined both for code and phase measurements as well as for positioning results. The code multipath error was determined using the Code-Minus-Carrier combination. The influence of multipath on phase observations and positioning error was determined using measurements on a very short baseline. In addition, the multipath was classified into two different types: specular and diffuse, using wavelet transform. The results confirm that the Galileo code observations are more resistant to the multipath effect than GPS observations. Among all of the observations examined, the lowest values of code multipath errors were recorded for the Galileo E5 signal. However, no advantage of Galileo over GPS was observed for phase observations and for the analysis of positioning results.


2020 ◽  
Vol 961 (7) ◽  
pp. 8-13
Author(s):  
V.V. Scherbakov ◽  
A.P. Karpik ◽  
I.V. Scherbakov ◽  
M.N. Barsuk ◽  
I.A. Buntsev

The development of a monitoring system based on global satellite navigation systems (GNSS) of ballast compaction quality during the construction and overhaul of railways is covered in the article. Traditional geodetic methods for determining the quality of ballast compaction are tedious. Non-geodetic methods (dynamic control systems, empirical models and geophysical methods) are not widely used on railways due to the low reliability of the ballast compaction quality, as well as the high complexity of the work. The proposed method and device of a quality control system for ballast compaction are based on the measurement of draft and residual deformations during compaction in dynamic mode. The current coordinates are determined using GNSS with dual-antenna positioning receivers performing advanced functions, including determining the relative position of the antennas in plan and height. The monitoring system developed at the Siberian State University of Railway Engineering enables real-time determining parameters which characterize the quality of compaction with high accuracy and the ability of controlling the compaction process according to the current parameters.


2013 ◽  
Vol 66 (5) ◽  
pp. 701-718 ◽  
Author(s):  
Jyh-Ching Juang ◽  
Chiu-Teng Tsai ◽  
Yu-Hsuan Chen

Beidou is the Global Navigation Satellite System (GNSS) being developed in China, with the aim to provide a global navigation service that is similar to the Global Positioning System (GPS) and Galileo navigation systems. In this paper, it is demonstrated that through the flexibility and re-configurability of a PC-based software receiver in which the baseband operations are realized in terms of software, it is possible to acquire, track, and demodulate Beidou satellite signals even when only a limited amount of information is known. Further, with the Beidou interface control document now available, the proposed PC-based software receiver can be easily adapted to perform navigation functions. This research lays the foundation for the further development of navigation receivers and exploration of multi-GNSS applications.


Oseanika ◽  
2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Muhamad Irfan ◽  
Dwi Haryanto

Sistem navigasi merupakan sistem yang memandu wahana gerak dari satu tempat ke tempat lainnya. Ada banyak sistem navigasi yang digunakan baik untuk kepentingan survei maupun untuk kepentingan umum. Sistem navigasi yang sudah dikenal luas adalah sistem navigasi berbasis satelit menggunakan global navigation satellite system (GNSS) atau global positioning system (GPS). GPS mempunyai kelemahan akibat faktor eksternal yakni sangat tergantung pada perambatan sinyal gelombang elektromagnetik dari satelit GPS ke receiver GPS. Sistem navigasi yang lainnya dan belum banyak dikenal namun sudah banyak digunakan adalah sistem navigasi inersial atau INS (inertial navigation system). INS ini merupakan sistem navigasi yang tidak terpengaruh oleh faktor eksternal, karena dibuat dengan mengikuti hukum gerak Newton, dan terdiri dari sensor accelerometer dan gyroscope. Biasanya INS ini dikombinasikan dengan sistem navigasi GPS untuk mendapatkan informasi navigasi yang lengkap dan akurat, yaitu posisi absolut, percepatan, kecepatan, arah, dan kelabilan (attitude) dengan frekuensi pengambilan data yang tinggi. Tulisan ini membahas tentang model dasar INS dari buku “Inertial Navigation Systems with Geodetic Applications” [Jekeli].Kata kunci:navigasi, accelerometer, gyroscope, inersial, GPS, Kalman filter


2021 ◽  
Vol 65 (02) ◽  
pp. 189-204
Author(s):  
Franc Dimc ◽  
Polona Pavlovčič Prešeren ◽  
Matej Bažec

This paper presents the results of a vulnerability test of several geodetic Global Navigation Satellite System (GNSS) receivers in case of intentional signal interference in the frequency L1 for GPS (Global Positioning System). Nine instruments from different manufacturers (i.e., Leica Geosystems AG, Trimble Inc., Javad GNSS) were tested. The test was based on static and kinematic jamming. A static scenario with three-minute interruptions was followed by experiments with a stationary jammer located at distances from 10 m to 160 m from the receivers. For short-term kinematic interference, the jammer was installed in the vehicle, which passed the GNSS instruments at different speeds. An analysis of different scenarios showed that the jammer interrupted GPS but not GLONASS signals in certain situations. Since Galileo was not nominally operational at the time of the July 2019 measurements, only GPS and GLONASS were eligible for the study. The geodetic GNSS instruments reacted to the interruptions with a decreased signal-to-noise-ratio (SNR) and either with a complete inability to determine the code/phase position or with an incorrect calculation of phase ambiguities (initialization), which also affected the quality of the positioning. The proximity of the jammer played the most significant role in the complete inability to receive the signal; however, for the incorrect positioning longer duration of jamming was also a reason.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1695
Author(s):  
Constantin-Octavian Andrei ◽  
Sonja Lahtinen ◽  
Markku Poutanen ◽  
Hannu Koivula ◽  
Jan Johansson

The tenth launch (L10) of the European Global Navigation Satellite System Galileo filled in all orbital slots in the constellation. The launch carried four Galileo satellites and took place in July 2018. The satellites were declared operational in February 2019. In this study, we report on the performance of the Galileo L10 satellites in terms of orbital inclination and repeat period parameters, broadcast satellite clocks and signal in space (SiS) performance indicators. We used all available broadcast navigation data from the IGS consolidated navigation files. These satellites have not been reported in the previous studies. First, the orbital inclination (56.7±0.15°) and repeat period (50680.7±0.22 s) for all four satellites are within the nominal values. The data analysis reveals also 13.5-, 27-, 177- and 354-days periodic signals. Second, the broadcast satellite clocks show different correction magnitude due to different trends in the bias component. One clock switch and several other minor correction jumps have occurred since the satellites were declared operational. Short-term discontinuities are within ±1 ps/s, whereas clock accuracy values are constantly below 0.20 m (root-mean-square—rms). Finally, the SiS performance has been very high in terms of availability and accuracy. Monthly SiS availability has been constantly above the target value of 87% and much higher in 2020 as compared to 2019. Monthly SiS accuracy has been below 0.20 m (95th percentile) and below 0.40 m (99th percentile). The performance figures depend on the content and quality of the consolidated navigation files as well as the precise reference products. Nevertheless, these levels of accuracy are well below the 7 m threshold (95th percentile) specified in the Galileo service definition document.


2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
Yuan Xu ◽  
Hao-Miao Zhou

A multiband printed loop mobile phone antenna for LTE/WWAN/GNSS application is presented. It covers seven communication bands (VSWR < 3) and GNSS band (VSWR < 1.5). The so-called GNSS (global navigation satellite system) band includes COMPASS, GALILEO, GPS, and GLONASS. From the analysis of the structure, the coupled-fed antenna mainly consists of three parts: the feeding strip, shorted strip, and U-shaped parasitic coupling strip. The proposed antenna works in three resonant modes, respectively, at 860 MHz (0.25λ), 1620 MHz (0.5λ), and 2620 MHz (1λ). A solution is provided, by which the navigation antenna can be integrated into the communication main antenna to save space. The antenna not only can work in GSM850/900/1800/1900/UMTS2100/LTE2300/2500 bands but also covers the world’s four major navigation systems. Moreover, the proposed antenna can be easily printed on the circuit board without loading any lumped element and only occupies a small volume of 18 × 32 × 3 mm3, which is suitable for smartphone application. In addition, the redundant design of multinavigation system is quite favorable for the elimination of errors or shadow area caused by single navigation system, especially for outdoor investigation, national security, and so on.


2021 ◽  
Vol 13 (5) ◽  
pp. 999
Author(s):  
Yung-Fu Tsai ◽  
Wen-Hao Yeh ◽  
Jyh-Ching Juang ◽  
Dian-Syuan Yang ◽  
Chen-Tsung Lin

The global positioning system (GPS) receiver has been one of the most important navigation systems for more than two decades. Although the GPS system was originally designed for near-Earth navigation, currently it is widely used in highly dynamic environments (such as low Earth orbit (LEO)). A space-capable GPS receiver (GPSR) is capable of providing timing and navigation information for spacecraft to determine the orbit and synchronize the onboard timing; therefore, it is one of the essential components of modern spacecraft. However, a space-grade GPSR is technology-sensitive and under export control. In order to overcome export control, the National Space Organization (NSPO) in Taiwan completed the development of a self-reliant space-grade GPSR in 2014. The NSPO GPSR, built in-house, has passed its qualification tests and is ready to fly onboard the Triton satellite. In addition to providing navigation, the GPS/global navigation satellite system (GNSS) is facilitated to many remote sensing missions, such as GNSS radio occultation (GNSS-RO) and GNSS reflectometry (GNSS-R). Based on the design of the NSPO GPSR, the NSPO is actively engaged in the development of the Triton program (a GNSS reflectometry mission). In a GNSS-R mission, the reflected signals are processed to form delay Doppler maps (DDMs) so that various properties (including ocean surface roughness, vegetation, soil moisture, and so on) can be retrieved. This paper describes not only the development of the NSPO GPSR but also the design, development, and special features of the Triton’s GNSS-R mission. Moreover, in order to verify the NSPO GNSS-R receiver, ground/flight tests are deemed essential. Then, data analyses of the airborne GNSS-R tests are presented in this paper.


GPS Solutions ◽  
2019 ◽  
Vol 24 (1) ◽  
Author(s):  
Adrià Rovira-Garcia ◽  
Deimos Ibáñez-Segura ◽  
Raul Orús-Perez ◽  
José Miguel Juan ◽  
Jaume Sanz ◽  
...  

Abstract Single-frequency users of the global navigation satellite system (GNSS) must correct for the ionospheric delay. These corrections are available from global ionospheric models (GIMs). Therefore, the accuracy of the GIM is important because the unmodeled or incorrectly part of ionospheric delay contributes to the positioning error of GNSS-based positioning. However, the positioning error of receivers located at known coordinates can be used to infer the accuracy of GIMs in a simple manner. This is why assessment of GIMs by means of the position domain is often used as an alternative to assessments in the ionospheric delay domain. The latter method requires accurate reference ionospheric values obtained from a network solution and complex geodetic modeling. However, evaluations using the positioning error method present several difficulties, as evidenced in recent works, that can lead to inconsistent results compared to the tests using the ionospheric delay domain. We analyze the reasons why such inconsistencies occur, applying both methodologies. We have computed the position of 34 permanent stations for the entire year of 2014 within the last Solar Maximum. The positioning tests have been done using code pseudoranges and carrier-phase leveled (CCL) measurements. We identify the error sources that make it difficult to distinguish the part of the positioning error that is attributable to the ionospheric correction: the measurement noise, pseudorange multipath, evaluation metric, and outliers. Once these error sources are considered, we obtain equivalent results to those found in the ionospheric delay domain assessments. Accurate GIMs can provide single-frequency navigation positioning at the decimeter level using CCL measurements and better positions than those obtained using the dual-frequency ionospheric-free combination of pseudoranges. Finally, some recommendations are provided for further studies of ionospheric models using the position domain method.


Sign in / Sign up

Export Citation Format

Share Document