scholarly journals GIS-Based Urban Flood Resilience Assessment Using Urban Flood Resilience Model: A Case Study of Peshawar City, Khyber Pakhtunkhwa, Pakistan

2021 ◽  
Vol 13 (10) ◽  
pp. 1864
Author(s):  
Muhammad Tayyab ◽  
Jiquan Zhang ◽  
Muhammad Hussain ◽  
Safi Ullah ◽  
Xingpeng Liu ◽  
...  

Urban flooding has been an alarming issue in the past around the globe, particularly in South Asia. Pakistan is no exception from this situation where urban floods with associated damages are frequently occurring phenomena. In Pakistan, rapid urbanization is the key factor for urban flooding, which is not taken into account. This study aims to identify flood sensitivity and coping capacity while assessing urban flood resilience and move a step toward the initialization of resilience, specifically for Peshawar city and generally for other cities of Pakistan. To achieve this aim, an attempt has been made to propose an integrated approach named the “urban flood resilience model (UFResi-M),” which is based on geographical information system(GIS), remote sensing (RS), and the theory of analytical hierarchy process (AHP). The UFResi-M incorporates four main factors—urban flood hazard, exposure, susceptibility, and coping capacity into two parts, i.e., sensitivity and coping capacity. The first part consists of three factors—IH, IE, and IS—that represent sensitivity, while the second part represents coping capacity (ICc). All four indicators were weighted through AHP to obtain product value for each indicator. The result showed that in the Westzone of the study area, the northwestern and central parts have very high resilience, whereas the southern and southwestern parts have very low resilience. Similarly, in the East zone of the study area, the northwest and southwest parts have very high resilience, while the northern and western parts have very low resilience. The likelihood of the proposed model was also determined using the receiver operating characteristic (ROC) curve method; the area under the curve acquired for the model was 0.904. The outcomes of these integrated assessments can help in tracking community performance and can provide a tool to decision makers to integrate the resilience aspect into urban flood management, urban development, and urban planning.

Climate ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 152
Author(s):  
Arianna Dada ◽  
Christian Urich ◽  
Francesca Berteni ◽  
Michèle Pezzagno ◽  
Patrizia Piro ◽  
...  

Climate change is globally causing more intense meteorological phenomena. Our cities experience increased rainfall intensity, more intense heat waves, and prolonged droughts providing economic, social, health and environmental challenges. Combined with population growth and rapid urbanization, the increasing impact of climate change will make our cities more and more vulnerable, especially to urban flooding. In order to adapt our urban water systems to these challenges, the adoption of newly emerging water management strategies is required. The complexity and scale of this challenge calls for the integration of knowledge from different disciplines and collaborative approaches. The water sensitive cities principles provide guidance for developing new techniques, strategies, policies, and tools to improve the livability, sustainability, and resilience of cities. In this study, the DAnCE4Water modeling approach promoting the development of water sensitive cities was applied to Parma, an Italian town that has faced serious water issues in the last few years. The city, indeed, had to face the consequences of flooding several times, caused by the inadequacy of both the network of open channels and the sewerage network due to the urban expansion and climate change of the last 30 years. Through the model, the efficiency of decentralized technologies, such as green roofs and porous pavement, and their integration with the existing centralized combined sewer system was assessed under a range of urban development scenarios. The obtained results show that the adoption of an integrated approach, including soft engineering hydraulic strategies, consisting in the use of natural and sustainable solutions, can increase resilience to urban flooding. Further, the study shows that there is a critical need for strategic investment in solutions that will deliver long-term sustainable outcomes.


2017 ◽  
Vol 17 (2) ◽  
pp. 205-224 ◽  
Author(s):  
Joanne Comer ◽  
Agnieszka Indiana Olbert ◽  
Stephen Nash ◽  
Michael Hartnett

Abstract. Urban developments in coastal zones are often exposed to natural hazards such as flooding. In this research, a state-of-the-art, multi-scale nested flood (MSN_Flood) model is applied to simulate complex coastal-fluvial urban flooding due to combined effects of tides, surges and river discharges. Cork city on Ireland's southwest coast is a study case. The flood modelling system comprises a cascade of four dynamically linked models that resolve the hydrodynamics of Cork Harbour and/or its sub-region at four scales: 90, 30, 6 and 2 m. Results demonstrate that the internalization of the nested boundary through the use of ghost cells combined with a tailored adaptive interpolation technique creates a highly dynamic moving boundary that permits flooding and drying of the nested boundary. This novel feature of MSN_Flood provides a high degree of choice regarding the location of the boundaries to the nested domain and therefore flexibility in model application. The nested MSN_Flood model through dynamic downscaling facilitates significant improvements in accuracy of model output without incurring the computational expense of high spatial resolution over the entire model domain. The urban flood model provides full characteristics of water levels and flow regimes necessary for flood hazard identification and flood risk assessment.


2021 ◽  
Vol 13 (6) ◽  
pp. 3126
Author(s):  
Muhammad Hussain ◽  
Muhammad Tayyab ◽  
Jiquan Zhang ◽  
Ashfaq Ahmad Shah ◽  
Kashif Ullah ◽  
...  

Floods are considered one of the world’s most overwhelming hydro meteorological disasters, which cause tremendous environmental and socioeconomic damages in a developing country such as Pakistan. In this study, we use a Geographic information system (GIS)-based multi-criteria approach to access detailed flood vulnerability in the District Shangla by incorporating the physical, socioeconomic vulnerabilities, and coping capacity. In the first step, 21 essential criteria were chosen under three vulnerability components. To support the analytical hierarchy process (AHP), the used criteria were transformed, weighted, and standardized into spatial thematic layers. Then a weighted overlay technique was used to build an individual map of vulnerability components. Finally, the integrated vulnerability map has been generated from the individual maps and spatial dimensions of vulnerability levels have been identified successfully. The results demonstrated that 25% of the western-middle area to the northern part of the study area comprises high to very high vulnerability because of the proximity to waterways, high precipitation, elevation, and other socioeconomic factors. Although, by integrating the coping capacity, the western-central and northern parts of the study area comprising from high to very high vulnerability. The coping capacities of the central and eastern areas are higher as compared to the northern and southern parts of the study area because of the numerous flood shelters and health complexes. A qualitative approach from the field validated the results of this study. This study’s outcomes would help disaster managers, decision makers, and local administration to quantify the spatial vulnerability of flood and establish successful mitigation plans and strategies for flood risk assessment in the study area.


2021 ◽  
Vol 14 (2) ◽  
pp. 38
Author(s):  
Apolonia Diana Sherly da Costa

This study applies interview, Focus Group Discussion (FGDs), Participatory Geographical Information Systems (pGIS), and a conceptual model of sustainability (CMS) using risk perception of local community to map flood hazard and assess the social and cultural copings to cope with river flooding in downstream areas i.e., Lasaen, Umatoos, and Fafoe villages of West Malaka Subdistrict of Belu Regency, Indonesia. The results of this study indicate that the rural-river flooding was inundated at all three villages. The cycle of flood is twenty-years per event (1939, 1959, 1975, 1999 through 2000), and from 2000 its occurrence was each year until 2012. Based on interviews and FGDs, the information of flood characteristics of Lasaen and Fafoe villages were similar, but Umatoos village was not. The single longevity of flood inundation was in Fafoe village (1 week-1 month). Whilst Lasaen and Umatoos villages were experiencing less duration of flood inundations (0-7 days to 14-21 days). Lasaen and Umatoos Villages were dealing with flood depth’s variation from the lowest depth (0-50cm) to its deepest (251-300cm). For CMS, the most invaluable coping that might be sustainable was cultural capital. Both social and cultural coping enhancements were implemented by local community. The minimum and lack of both these transformable sub-copings were still the problem in the discourse unit of sustainability. As each sub-coping would be overlapped if there has no sufficient distribution of it, utilized by the local community. The genuineness local knowledge of community in applying their social and cultural copings in sustainability is seen as a unique reference and a useful form of local wisdom which can be highlighted and adopted as an effective and/or example discourse analysis by the other rural villages in developing nations that are also still struggling and coping with flood disaster.


2020 ◽  
Vol 12 (19) ◽  
pp. 7865 ◽  
Author(s):  
Quntao Yang ◽  
Shuliang Zhang ◽  
Qiang Dai ◽  
Rui Yao

Urban flooding is a severe and pervasive hazard caused by climate change, urbanization, and limitations of municipal drainage systems. Cities face risks from different types of floods, depending on various geographical, environmental, and hydrometeorological conditions. In response to the growing threat of urban flooding, a better understanding of urban flood vulnerability is needed. In this study, a comprehensive method was developed to evaluate the vulnerability of different types of urban floods. First, a coupled urban flood model was built to obtain the extent of influence of various flood scenarios caused by rainfall and river levee overtopping. Second, an assessment framework for urban flood vulnerability based on an indicator method was used to evaluate the vulnerability in different flood hazard scenarios. Finally, the method was applied to Lishui City, China, and the distribution and pattern of urban flood vulnerability were studied. The results highlight the spatial variability of flooding and the vulnerability distributions of different types of urban floods. Compound floods were identified to cause more severe effects in the urban areas.


2019 ◽  
Vol 11 (10) ◽  
pp. 2830 ◽  
Author(s):  
Xianhong Meng ◽  
Min Zhang ◽  
Jiahong Wen ◽  
Shiqiang Du ◽  
Hui Xu ◽  
...  

With rapid urbanization, floods that occur are more frequently associated with non-riverine, urban flooding. Reliable and efficient simulation of rainstorm inundation in an urban environment is profound for risk analysis and sustainable development. Although sophisticated hydrodynamic models are now available to simulate the urban flooding processes with a high accuracy, the complexity and heavy computation requirement render these models difficult to apply. Moreover, a large number of input data describing the complex urban underlying surfaces is required to setup the models, which are typically unavailable in reality. In this paper, a simple and efficient urban rainstorm inundation simulation method, named URIS, was developed based on a geographic information system (GIS) with limited input data. The URIS method is a simplified distributed hydrological model, integrating three components of the soil conservation service (SCS) module, surface flow module, and drainage flow module. Cumulative rainfall-runoff, output from the SCS model, feeds the surface flow model, while the drainage flow module is an important waterlogging mitigation measure. The central urban area of Shanghai in China was selected as a study case to calibrate and verify the method. It was demonstrated that the URIS is capable of characterizing the spatiotemporal dynamic processes of urban inundation and drainage under a range of scenarios, such as different rainstorm patterns with varying return periods and different alterations of drainage diameters. URIS is therefore characterized with high efficiency, reasonable data input, and low hardware requirements and should be an alternative to hydrodynamic models. It is useful for urgent urban flood inundation estimation and is applicable for other cities in supporting emergency rescue and sustainable urban planning.


2016 ◽  
Vol 16 (2) ◽  
pp. 349-369 ◽  
Author(s):  
U. C. Nkwunonwo ◽  
M. Whitworth ◽  
B. Baily

Abstract. Urban flooding has been and will continue to be a significant problem for many cities across the developed and developing world. Crucial to the amelioration of the effects of these floods is the need to formulate a sound flood management policy, which is driven by knowledge of the frequency and magnitude of impacts of these floods. Within the area of flood research, attempts are being made to gain a better understanding of the causes, impacts, and pattern of urban flooding. According to the United Nations office for disaster reduction (UNISDR), flood risk is conceptualized on the basis of three integral components which are frequently adopted during flood damage estimation. These components are: probability of flood hazard, the level of exposure, and vulnerabilities of elements at risk. Reducing the severity of each of these components is the objective of flood risk management under the UNISDR guideline and idea of “living with floods”. On the basis of this framework, the present research reviews flood risk within the Lagos area of Nigeria over the period 1968–2012. During this period, floods have caused harm to millions of people physically, emotionally, and economically. Arguably over this period the efforts of stakeholders to address the challenges appear to have been limited by, amongst other things, a lack of reliable data, a lack of awareness amongst the population affected, and a lack of knowledge of flood risk mitigation. It is the aim of this research to assess the current understanding of flood risk and management in Lagos and to offer recommendations towards future guidance.


Author(s):  
Kapil Gupta

This note presents a short commentary on the recurring urban flooding in India and the challenges the country faces in implementing sustainable drainage practices and developing urban flood resilience. The major incidences of heavy rainfall and the consequent urban flooding and their causes are briefly described. The recent flood disaster management and mitigation measures carried out by the Central, State and Local Government are highlighted. The flood resilience initiatives and challenges are then discussed. The effects of climate change on increased rainfall in shorter durations are now being felt in many Indian cities. The planners are now taking cognizance of this and future flood resilience measures are being planned to incorporate an integrated approach to stormwater management by recommending best management practices in the stormwater manuals. However, a lot still needs to be done to make the cities in India flood resilient. This article is part of the theme issue ‘Urban flood resilience'.


10.29007/81mt ◽  
2018 ◽  
Author(s):  
Noemi Gonzalez-Ramirez ◽  
Fernando Nardi ◽  
James S. O'Brien

Two-dimensional flood models are becoming increasing more accurate in simulating surface water flooding. Concurrently flood hazard maps have higher resolution to support flood mitigation planning. Most flood studies focus on large river flooding (~ 100-yr flood), but in urban areas, emergency access and evacuation routes are needed for frequent rainfall and flood events (< 10-yr return periods). Urban flooding is more complex than river margin flooding and requires significantly more model detail to accurate access risk and hazard for frequent storms. Urban flooding is an event characterized by its frequent repetitive and systematic impact on population and urban infrastructure. Detailed urban flood inundation is now being performed with spatially and temporally variable rainfall and infiltration, channel and street flow, hydraulic structures, surface water storm drain exchange, building loss of storage and flow obstruction, building collapse, levee/wall overtopping and collapse, groundwater flow, sediment scour/deposition and mudflows. In residential neighborhoods, shallow flooding is controlled by streets, buildings, walls and storm drain facilities. Several flood model details and their impact on shallow flooding are discussed including spatially variable storm intensities on pervious and impervious surfaces, surface water exchange with limited storm drain system capacity, and building roof runoff. Several predictive strategies are highlighted to simulate flooding from nuisance flows to major disasters.


2016 ◽  
Author(s):  
Agnieszka Indiana Olbert ◽  
Joanne Comer ◽  
Stephen Nash ◽  
Michael Hartnett

Abstract. Urban developments in coastal zones are often exposed to natural hazards such as flooding. In this research, a state-of-the-art, multi-scale nested flood (MSN_Flood) model is applied to simulate complex coastal-fluvial urban flooding due to combined effects of tides, surges and river discharges. Cork City on Ireland’s southwest coast is a study case. The flood modelling system comprises of a cascade of four dynamically linked models that resolve the hydrodynamics of Cork Harbour and/or its sub region at four scales 90 m, 30 m, 6 m and 2 m. Results demonstrate that the internalisation of the nested boundary through a use of ghost cells combined with a tailored adaptive interpolation technique creates a highly dynamic moving boundary that permits flooding and drying of the nested boundary. This novel feature of MSN_Flood provides a high degree of choice regarding the location of the boundaries to the nested domain and therefore flexibility in model application. The nested MSN_Flood model through dynamic downscaling facilitates significant improvements in accuracy of model output without incurring the computational expense of high spatial resolution over the entire model domain. The urban flood model provides full characteristics of water levels and flow regimes necessary for flood hazard identification and flood risk assessment.


Sign in / Sign up

Export Citation Format

Share Document