scholarly journals Using Unmanned Aerial Vehicle and LiDAR-Derived DEMs to Estimate Channels of Small Tributary Streams

2021 ◽  
Vol 13 (17) ◽  
pp. 3380 ◽  
Author(s):  
Joan Grau ◽  
Kang Liang ◽  
Jae Ogilvie ◽  
Paul Arp ◽  
Sheng Li ◽  
...  

Defining stream channels in a watershed is important for assessing freshwater habitat availability, complexity, and quality. However, mapping channels of small tributary streams becomes challenging due to frequent channel change and dense vegetation coverage. In this study, we used an Unmanned Aerial Vehicle (UAV) and photogrammetry method to obtain a 3D Digital Surface Model (DSM) to estimate the total in-stream channel and channel width within grazed riparian pastures. We used two methods to predict the stream channel boundary: the Slope Gradient (SG) and Vertical Slope Position (VSP). As a comparison, the same methods were also applied using low-resolution DEM, obtained with traditional photogrammetry (coarse resolution) and two more LiDAR-derived DEMs with different resolution. When using the SG method, the higher-resolution, UAV-derived DEM provided the best agreement with the field-validated area followed by the high-resolution LiDAR DEM, with Mean Squared Errors (MSE) of 1.81 m and 1.91 m, respectively. The LiDAR DEM collected at low resolution was able to predict the stream channel with a MSE of 3.33 m. Finally, the coarse DEM did not perform accurately and the MSE obtained was 26.76 m. On the other hand, when the VSP method was used we found that low-resolution LiDAR DEM performed the best followed by high-resolution LiDAR, with MSE values of 9.70 and 11.45 m, respectively. The MSE for the UAV-derived DEM was 15.12 m and for the coarse DEM was 20.78 m. We found that the UAV-derived DEM could be used to identify steep bank which could be used for mapping the hydrogeomorphology of lower order streams. Therefore, UAVs could be applied to efficiently map small stream channels in order to monitor the dynamic changes occurring in these ecosystems at a local scale. However, the VSP method should be used to map stream channels in small watersheds when high resolution DEM data is not available.

2021 ◽  
Vol 13 (10) ◽  
pp. 1997
Author(s):  
Joan Grau ◽  
Kang Liang ◽  
Jae Ogilvie ◽  
Paul Arp ◽  
Sheng Li ◽  
...  

In agriculture-dominant watersheds, riparian ecosystems provide a wide array of benefits such as reducing soil erosion, filtering chemical compounds, and retaining sediments. Traditionally, the boundaries of riparian zones could be estimated from Digital Elevation Models (DEMs) or field surveys. In this study, we used an Unmanned Aerial Vehicle (UAV) and photogrammetry method to map the boundaries of riparian zones. We first obtained the 3D digital surface model with a UAV. We applied the Vertical Distance to Channel Network (VDTCN) as a classifier to delineate the boundaries of the riparian area in an agricultural watershed. The same method was also used with a low-resolution DEM obtained with traditional photogrammetry and two more LiDAR-derived DEMs, and the results of different methods were compared. Results indicated that higher resolution UAV-derived DEM achieved a high agreement with the field-measured riparian zone. The accuracy achieved (Kappa Coefficient, KC = 63%) with the UAV-derived DEM was comparable with high-resolution LiDAR-derived DEMs and significantly higher than the prediction accuracy based on traditional low-resolution DEMs obtained with high altitude aerial photos (KC = 25%). We also found that the presence of a dense herbaceous layer on the ground could cause errors in riparian zone delineation with VDTCN for both low altitude UAV and LiDAR data. Nevertheless, the study indicated that using the VDTCN as a classifier combined with a UAV-derived DEM is a suitable approach for mapping riparian zones and can be used for precision agriculture and environmental protection over agricultural landscapes.


Author(s):  
А.С. Алексеев ◽  
А.А. Никифоров ◽  
А.А. Михайлова ◽  
М.Р. Вагизов

В связи со старением информационных материалов о состоянии лесов существует потребность в разработке новых методов таксации древостоев, основанных на применении последних научно-технических достижений в области теории структуры и продуктивности древостоев, дистанционных методов изучения лесов, информационных и ГИС технологий. В статье приведены результаты разработки и проверки нового метода определения таксационных характеристик сомкнутых насаждений на основе правила 3/2 и подобных ему правил Хильми и Рейнеке, с одной стороны, и определения числа деревьев на единице площади по снимку сверх высокого разрешения, полученного с помощью БПЛА, с другой. С теоретической точки зрения эта зависимости величин запаса, средней высоты и среднего диаметра от числа стволов на единице площади относятся к классу аллометрических связей, очень часто встречающихся при количественном описании соотношений частей биологических систем разных уровней иерархии, от организмов до экосистем. Параметры аллометрических зависимостей запаса, средних высоты и диаметра от числа стволов на единице площади были определены для основных лесообразующих пород по данным таблиц хода роста нормальных (полных) древостоев с теоретическим показателем степени и затем использованы для расчетов. Число деревьев на единице площади определялось по снимку с разрешением 7,13 см/пиксель, полученному с помощью 4-роторной платформы. Обработка материалов аэрофотосъемки была выполнена в специализированной фотограмметрической системе Agisoft Photoscan. В результате были получены ортофотоплан и цифровая модель поверхности крон деревьев на изучаемую территорию с определением их высот. Для автоматизированной обработки полученных изображений с целью получения значений числа деревьев на единицу площади был создан специализированный скрипт на языке Java. Погрешности определения таксационных характеристик древостоев предлагаемым методом не выше установленных действующими нормативными материалами. Every time there is a demand for new innovative methods of forest resources estimation based on last achievements in theoretical science, remote sensing methods, information and GIS-technologies. In the paper are presented a new method and the results of its application to forest stands growing stock, mean height and diameter determination. The method is based on rule 3/2 and similar Reineke and Hilmy rules, on one hand and high resolution image made by unmanned aerial vehicle, which used for determination of number of trees per area unit, on other. The above rules are well known in quantitative biology as an allometric and widely used for description of different kind of relations in biological systems of various scale: from organisms to ecosystems. Parameters of above allometric relationships between growing stock, mean height and diameter and stems density per area unit was determine on the base of full stock growth and yield tables for main tree species and after used for experimental calculations. The number of trees per area unit was determined after special treatment of high resolution image made by unmanned flying machine. The growing stock, mean height and diameter determined by suggested method was compared with the data of regular forest inventory. Comparison gives positive result and method may be recommended for further development.


2017 ◽  
Vol 21 (4) ◽  
pp. 2187-2201 ◽  
Author(s):  
Pere Quintana-Seguí ◽  
Marco Turco ◽  
Sixto Herrera ◽  
Gonzalo Miguez-Macho

Abstract. Offline land surface model (LSM) simulations are useful for studying the continental hydrological cycle. Because of the nonlinearities in the models, the results are very sensitive to the quality of the meteorological forcing; thus, high-quality gridded datasets of screen-level meteorological variables are needed. Precipitation datasets are particularly difficult to produce due to the inherent spatial and temporal heterogeneity of that variable. They do, however, have a large impact on the simulations, and it is thus necessary to carefully evaluate their quality in great detail. This paper reports the quality of two high-resolution precipitation datasets for Spain at the daily time scale: the new SAFRAN-based dataset and Spain02. SAFRAN is a meteorological analysis system that was designed to force LSMs and has recently been extended to the entirety of Spain for a long period of time (1979/1980–2013/2014). Spain02 is a daily precipitation dataset for Spain and was created mainly to validate regional climate models. In addition, ERA-Interim is included in the comparison to show the differences between local high-resolution and global low-resolution products. The study compares the different precipitation analyses with rain gauge data and assesses their temporal and spatial similarities to the observations. The validation of SAFRAN with independent data shows that this is a robust product. SAFRAN and Spain02 have very similar scores, although the latter slightly surpasses the former. The scores are robust with altitude and throughout the year, save perhaps in summer when a diminished skill is observed. As expected, SAFRAN and Spain02 perform better than ERA-Interim, which has difficulty capturing the effects of the relief on precipitation due to its low resolution. However, ERA-Interim reproduces spells remarkably well in contrast to the low skill shown by the high-resolution products. The high-resolution gridded products overestimate the number of precipitation days, which is a problem that affects SAFRAN more than Spain02 and is likely caused by the interpolation method. Both SAFRAN and Spain02 underestimate high precipitation events, but SAFRAN does so more than Spain02. The overestimation of low precipitation events and the underestimation of intense episodes will probably have hydrological consequences once the data are used to force a land surface or hydrological model.


2018 ◽  
Vol 160 ◽  
pp. 103-116 ◽  
Author(s):  
Benqing Chen ◽  
Yanming Yang ◽  
Hongtao Wen ◽  
Hailin Ruan ◽  
Zaiming Zhou ◽  
...  

2021 ◽  
Author(s):  
Shuang Wu ◽  
Lei Deng ◽  
Lijie Guo ◽  
Yanjie Wu

Abstract Background: Leaf Area Index (LAI) is half of the amount of leaf area per unit horizontal ground surface area. Consequently, accurate vegetation extraction in remote sensing imagery is critical for LAI estimation. However, most studies do not fully exploit the advantages of Unmanned Aerial Vehicle (UAV) imagery with high spatial resolution, such as not removing the background (soil and shadow, etc.). Furthermore, the advancement of multi-sensor synchronous observation and integration technology allows for the simultaneous collection of canopy spectral, structural, and thermal data, making it possible for data fusion.Methods: To investigate the potential of high-resolution UAV imagery combined with multi-sensor data fusion in LAI estimation. High-resolution UAV imagery was obtained with a multi-sensor integrated MicaSense Altum camera to extract the wheat canopy's spectral, structural, and thermal features. After removing the soil background, all features were fused, and LAI was estimated using Random Forest and Support Vector Machine Regression.Result: The results show that: (1) the soil background reduced the accuracy of the LAI prediction, and soil background could be effectively removed by taking advantage of high-resolution UAV imagery. After removing the soil background, the LAI prediction accuracy improved significantly, R2 raised by about 0.27, and RMSE fell by about 0.476. (2) The fusion of multi-sensor synchronous observation data improved LAI prediction accuracy and achieved the best accuracy (R2 = 0.815 and RMSE = 1.023). (3) When compared to other variables, 23 CHM, NRCT, NDRE, and BLUE are crucial for LAI estimation. Even the simple Multiple Linear Regression model could achieve high prediction accuracy (R2 = 0.679 and RMSE = 1.231), providing inspiration for rapid and efficient LAI prediction.Conclusions: The method of this study can be transferred to other sites with more extensive areas or similar agriculture structures, which will facilitate agricultural production and management.


2019 ◽  
Vol 11 (12) ◽  
pp. 1413 ◽  
Author(s):  
Víctor González-Jaramillo ◽  
Andreas Fries ◽  
Jörg Bendix

The present investigation evaluates the accuracy of estimating above-ground biomass (AGB) by means of two different sensors installed onboard an unmanned aerial vehicle (UAV) platform (DJI Inspire I) because the high costs of very high-resolution imagery provided by satellites or light detection and ranging (LiDAR) sensors often impede AGB estimation and the determination of other vegetation parameters. The sensors utilized included an RGB camera (ZENMUSE X3) and a multispectral camera (Parrot Sequoia), whose images were used for AGB estimation in a natural tropical mountain forest (TMF) in Southern Ecuador. The total area covered by the sensors included 80 ha at lower elevations characterized by a fast-changing topography and different vegetation covers. From the total area, a core study site of 24 ha was selected for AGB calculation, applying two different methods. The first method used the RGB images and applied the structure for motion (SfM) process to generate point clouds for a subsequent individual tree classification. Per the classification at tree level, tree height (H) and diameter at breast height (DBH) could be determined, which are necessary input parameters to calculate AGB (Mg ha−1) by means of a specific allometric equation for wet forests. The second method used the multispectral images to calculate the normalized difference vegetation index (NDVI), which is the basis for AGB estimation applying an equation for tropical evergreen forests. The obtained results were validated against a previous AGB estimation for the same area using LiDAR data. The study found two major results: (i) The NDVI-based AGB estimates obtained by multispectral drone imagery were less accurate due to the saturation effect in dense tropical forests, (ii) the photogrammetric approach using RGB images provided reliable AGB estimates comparable to expensive LiDAR surveys (R2: 0.85). However, the latter is only possible if an auxiliary digital terrain model (DTM) in very high resolution is available because in dense natural forests the terrain surface (DTM) is hardly detectable by passive sensors due to the canopy layer, which impedes ground detection.


2020 ◽  
Vol 8 (3) ◽  
pp. 224-244
Author(s):  
Lucas Moreira Furlan ◽  
Vania Rosolen ◽  
Jepherson Salles ◽  
César Augusto Moreira ◽  
Manuel Eduardo Ferreira ◽  
...  

Human pressure on the water resources provided by natural isolated wetlands has intensified in Brazil due to an increase in agricultural land equipped with irrigation. However, the amount of water stored in these areas and its contribution to aquifer recharge is unknown. This study aimed to quantify the amount of water that can be retained in a natural wetland and to propose a model of groundwater recharge. We used remote sensing techniques involving unmanned aerial vehicle to map the wetland and highlight its internal morphology, using a red–green–blue orthomosaic and a digital surface model. The 2-D inversion and a pseudo-3-D model from electrical resistivity tomography data were used to visualize the subsurface structures and hydrologic flow paths. The wetland is a reservoir storing up to 416.996 m3 of water during the rainy months. Distinct internal compartments characterize the wetland topography and different water-volume storage, lower in the border and higher in the center. A leakage point connects surface water to groundwater through direct vertical flow, which constitutes the aquifer recharge zone. Remotely sensed very high-resolution images allied with geophysical techniques allowed complete surface and subsurface imaging and offered visual tools that contributed to understanding the hydrodynamics of the wetland.


2020 ◽  
Vol 50 (10) ◽  
pp. 1012-1024
Author(s):  
Meimei Wang ◽  
Jiayuan Lin

Individual tree height (ITH) is one of the most important vertical structure parameters of a forest. Field measurement and laser scanning are very expensive for large forests. In this paper, we propose a cost-effective method to acquire ITHs in a forest using the optical overlapping images captured by an unmanned aerial vehicle (UAV). The data sets, including a point cloud, a digital surface model (DSM), and a digital orthorectified map (DOM), were produced from the UAV imagery. The canopy height model (CHM) was obtained by subtracting the digital elevation model (DEM) from the DSM removed of low vegetation. Object-based image analysis was used to extract individual tree crowns (ITCs) from the DOM, and ITHs were initially extracted by overlaying ITC outlines on the CHM. As the extracted ITHs were generally slightly shorter than the measured ITHs, a linear relationship was established between them. The final ITHs of the test site were retrieved by inputting extracted ITHs into the linear regression model. As a result, the coefficient of determination (R2), the root mean square error (RMSE), the mean absolute error (MAE), and the mean relative error (MRE) of the retrieved ITHs against the measured ITHs were 0.92, 1.08 m, 0.76 m, and 0.08, respectively.


Sign in / Sign up

Export Citation Format

Share Document