scholarly journals Central Courtyard Feature Extraction in Remote Sensing Aerial Images Using Deep Learning: A Case-Study of Iran

2021 ◽  
Vol 13 (23) ◽  
pp. 4843
Author(s):  
Hadi Yazdi ◽  
Ilija Vukorep ◽  
Marzena Banach ◽  
Sajad Moazen ◽  
Adam Nadolny ◽  
...  

Central courtyards are primary components of vernacular architecture in Iran. The directions, dimensions, ratios, and other characteristics of central courtyards are critical for studying historical passive cooling and heating solutions. Several studies on central courtyards have compared their features in different cities and climatic zones in Iran. In this study, deep learning methods for object detection and image segmentation are applied to aerial images, to extract the features of central courtyards. The case study explores aerial images of nine historical cities in Bsk, Bsh, Bwk, and Bwh Köppen climate zones. Furthermore, these features were gathered in an extensive dataset, with 26,437 samples and 76 geometric and climactic features. Additionally, the data analysis methods reveal significant correlations between various features, such as the length and width of courtyards. In all cities, the correlation coefficient between these two characteristics is approximately +0.88. Numerous mathematical equations are generated for each city and climate zone by fitting the linear regression model to these data in different cities and climate zones. These equations can be used as proposed design models to assist designers and researchers in predicting and locating the best courtyard houses in Iran’s historical regions.

Smart Cities ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 1220-1243
Author(s):  
Hafiz Suliman Munawar ◽  
Fahim Ullah ◽  
Siddra Qayyum ◽  
Amirhossein Heravi

Floods are one of the most fatal and devastating disasters, instigating an immense loss of human lives and damage to property, infrastructure, and agricultural lands. To cater to this, there is a need to develop and implement real-time flood management systems that could instantly detect flooded regions to initiate relief activities as early as possible. Current imaging systems, relying on satellites, have demonstrated low accuracy and delayed response, making them unreliable and impractical to be used in emergency responses to natural disasters such as flooding. This research employs Unmanned Aerial Vehicles (UAVs) to develop an automated imaging system that can identify inundated areas from aerial images. The Haar cascade classifier was explored in the case study to detect landmarks such as roads and buildings from the aerial images captured by UAVs and identify flooded areas. The extracted landmarks are added to the training dataset that is used to train a deep learning algorithm. Experimental results show that buildings and roads can be detected from the images with 91% and 94% accuracy, respectively. The overall accuracy of 91% is recorded in classifying flooded and non-flooded regions from the input case study images. The system has shown promising results on test images belonging to both pre- and post-flood classes. The flood relief and rescue workers can quickly locate flooded regions and rescue stranded people using this system. Such real-time flood inundation systems will help transform the disaster management systems in line with modern smart cities initiatives.


Author(s):  
R. Ito ◽  
K. Hara ◽  
Y. Shimazaki ◽  
N. Mori ◽  
Y. Kani ◽  
...  

Abstract. The high resolution statistical data such as the number of households in small areas are indispensable for urban planning, disaster prevention and many kinds of business activities. However, it is difficult to obtain the number of households in small areas because census data are usually aggregated in municipal districts. Techniques for automatically analyzing statistical data, e.g., land cover, population density, and the number of households obtained from satellite/aerial images have been continuously studied. In recent years, many methods using deep learning have been proposed in the related literature. In estimating the number of households, the use of buildings, the number of floors and that of rooms are also important information, but it is difficult to obtain such information from only image analysis using deep learning. This study proposes a method for estimating the number of households in 100 meter grid cells from satellite images using deep learning, and adjusting it using ancillary data obtained from a few statistical datasets. The application of this method to Djakarta shows that the difference between the estimated values and the corresponding values of census is less than 10%.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3813
Author(s):  
Athanasios Anagnostis ◽  
Aristotelis C. Tagarakis ◽  
Dimitrios Kateris ◽  
Vasileios Moysiadis ◽  
Claus Grøn Sørensen ◽  
...  

This study aimed to propose an approach for orchard trees segmentation using aerial images based on a deep learning convolutional neural network variant, namely the U-net network. The purpose was the automated detection and localization of the canopy of orchard trees under various conditions (i.e., different seasons, different tree ages, different levels of weed coverage). The implemented dataset was composed of images from three different walnut orchards. The achieved variability of the dataset resulted in obtaining images that fell under seven different use cases. The best-trained model achieved 91%, 90%, and 87% accuracy for training, validation, and testing, respectively. The trained model was also tested on never-before-seen orthomosaic images or orchards based on two methods (oversampling and undersampling) in order to tackle issues with out-of-the-field boundary transparent pixels from the image. Even though the training dataset did not contain orthomosaic images, it achieved performance levels that reached up to 99%, demonstrating the robustness of the proposed approach.


2021 ◽  
Vol 13 (12) ◽  
pp. 2417
Author(s):  
Savvas Karatsiolis ◽  
Andreas Kamilaris ◽  
Ian Cole

Estimating the height of buildings and vegetation in single aerial images is a challenging problem. A task-focused Deep Learning (DL) model that combines architectural features from successful DL models (U-NET and Residual Networks) and learns the mapping from a single aerial imagery to a normalized Digital Surface Model (nDSM) was proposed. The model was trained on aerial images whose corresponding DSM and Digital Terrain Models (DTM) were available and was then used to infer the nDSM of images with no elevation information. The model was evaluated with a dataset covering a large area of Manchester, UK, as well as the 2018 IEEE GRSS Data Fusion Contest LiDAR dataset. The results suggest that the proposed DL architecture is suitable for the task and surpasses other state-of-the-art DL approaches by a large margin.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Fang Fang Zhao ◽  
Linh Chau ◽  
Anita Schuchardt

Abstract Background Many students solving quantitative problems in science struggle to apply mathematical instruction they have received to novel problems. The few students who succeed often draw on both their mathematical understanding of the equation and their scientific understanding of the phenomenon. Understanding the sensemaking opportunities provided during instruction is necessary to develop strategies for improving student outcomes. However, few studies have examined the types of sensemaking opportunities provided during instruction of mathematical equations in science classrooms and whether they are organized in ways that facilitate integration of mathematical and scientific understanding. This study uses a multiple case study approach to examine the sensemaking opportunities provided by four different instructors when teaching the same biological phenomenon, population growth. Two questions are addressed: (1) What types of sensemaking opportunities are provided by instructors, and (2) How are those sensemaking opportunities organized? The Sci-Math Sensemaking Framework, previously developed by the authors, was used to identify the types of sensemaking. Types and organization of sensemaking opportunities were compared across the four instructors. Results The instructors provided different opportunities for sensemaking of equations, even though they were covering the same scientific phenomenon. Sensemaking opportunities were organized in three ways, blended (previously described in studies of student problem solving as integration of mathematics and science resources), and two novel patterns, coordinated and adjacent. In coordinated sensemaking, two types of sensemaking in the same dimension (either mathematics or science) are explicitly connected. In adjacent sensemaking, two different sensemaking opportunities are provided within the same activity but not explicitly connected. Adjacent sensemaking was observed in three instructors’ lessons, but only two instructors provided opportunities for students to engage in blended sensemaking. Conclusions Instructors provide different types of sensemaking opportunities when teaching the same biological phenomenon, making different resources available to students. The organization of sensemaking also differed with only two instructors providing blended sensemaking opportunities. This result may explain why few students engage in the successful strategy of integrating mathematics and science resources when solving quantitative problems. Documentation of these instructional differences in types and organization of sensemaking provides guidance for future studies investigating the effect of instruction on student sensemaking.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3800
Author(s):  
Sebastian Krapf ◽  
Nils Kemmerzell ◽  
Syed Khawaja Haseeb Khawaja Haseeb Uddin ◽  
Manuel Hack Hack Vázquez ◽  
Fabian Netzler ◽  
...  

Roof-mounted photovoltaic systems play a critical role in the global transition to renewable energy generation. An analysis of roof photovoltaic potential is an important tool for supporting decision-making and for accelerating new installations. State of the art uses 3D data to conduct potential analyses with high spatial resolution, limiting the study area to places with available 3D data. Recent advances in deep learning allow the required roof information from aerial images to be extracted. Furthermore, most publications consider the technical photovoltaic potential, and only a few publications determine the photovoltaic economic potential. Therefore, this paper extends state of the art by proposing and applying a methodology for scalable economic photovoltaic potential analysis using aerial images and deep learning. Two convolutional neural networks are trained for semantic segmentation of roof segments and superstructures and achieve an Intersection over Union values of 0.84 and 0.64, respectively. We calculated the internal rate of return of each roof segment for 71 buildings in a small study area. A comparison of this paper’s methodology with a 3D-based analysis discusses its benefits and disadvantages. The proposed methodology uses only publicly available data and is potentially scalable to the global level. However, this poses a variety of research challenges and opportunities, which are summarized with a focus on the application of deep learning, economic photovoltaic potential analysis, and energy system analysis.


Sign in / Sign up

Export Citation Format

Share Document