scholarly journals Utilization of Hyperspectral Remote Sensing Imagery for Improving Burnt Area Mapping Accuracy

2021 ◽  
Vol 13 (24) ◽  
pp. 5029
Author(s):  
Michael Nolde ◽  
Simon Plank ◽  
Torsten Riedlinger

Wildfires pose a direct threat when occurring close to populated areas. Additionally, their significant carbon and climate feedbacks represent an indirect threat on a global, long-term scale. Monitoring and analyzing wildfires is therefore a crucial task to increase the understanding of interconnections between fire and ecosystems, in order to improve wildfire management activities. This study investigates the suitability of 232 different red/near-infrared band combinations based on hyperspectral imagery of the DESIS sensor with regard to burnt area detection accuracy. It is shown that the selection of wavelengths greatly influences the detection quality, and that especially the utilization of lower near-infrared wavelengths increases the yielded accuracy. For burnt area analysis based on the Normalized Difference Vegetation Index (NDVI), the optimal wavelength range has been found to be 660–670 nm and 810–835 nm for the red band and near-infrared band, respectively.

2019 ◽  
Vol 12 (2) ◽  
pp. 26-40
Author(s):  
Sheriza Mohd Razali ◽  
Ahmad Ainuddin Nuruddin ◽  
Marryanna Lion

Abstract Mangroves critically require conservation activity due to human encroachment and environmental unsustainability. The forests must be conserving through monitoring activities with an application of remote sensing satellites. Recent high-resolution multispectral satellite was used to produce Normalized Difference Vegetation Index (NDVI) and Tasselled Cap transformation (TC) indices mapping for the area. Satellite Pour l’Observation de la Terre (SPOT) SPOT-6 was employed for ground truthing. The area was only a part of mangrove forest area of Tanjung Piai which estimated about 106 ha. Although, the relationship between the spectral indices and dendrometry parameters was weak, we found a very significant between NDVI (mean) and stem density (y=10.529x + 12.773) with R2=0.1579. The sites with NDVI calculated varied from 0.10 to 0.26 (P1 and P2), under the environmental stress due to sand deposition found was regard as unhealthy vegetation areas. Whereas, site P5 with NDVI (mean) 0.67 is due to far distance from risk wave’s zone, therefore having young/growing trees with large lush green cover was regard as healthy vegetation area. High greenness indicated in TC means, the bands respond to a combination of high absorption of chlorophyll in the visible bands and the high reflectance of leaf structures in the near-infrared band, which is characteristic of healthy green vegetation. Overall, our study showed our tested WV-2 image combined with ground data provided valuable information of mangrove health assessment for Tanjung Piai, Johor, Malay Peninsula.


Weed Science ◽  
2006 ◽  
Vol 54 (02) ◽  
pp. 346-353 ◽  
Author(s):  
Francisca López-Granados ◽  
Montse Jurado-Expósito ◽  
Jose M. Peña-Barragán ◽  
Luis García-Torres

Field research was conducted to determine the potential of hyperspectral and multispectral imagery for late-season discrimination and mapping of grass weed infestations in wheat. Differences in reflectance between weed-free wheat and wild oat, canarygrass, and ryegrass were statistically significant in most 25-nm-wide wavebands in the 400- and 900-nm spectrum, mainly due to their differential maturation. Visible (blue, B; green, G; red, R) and near infrared (NIR) wavebands and five vegetation indices: Normalized Difference Vegetation Index (NDVI), Ratio Vegetation Index (RVI), R/B, NIR-R and (R − G)/(R + G), showed potential for discriminating grass weeds and wheat. The efficiency of these wavebands and indices were studied by using color and color-infrared aerial images taken over three naturally infested fields. In StaCruz, areas infested with wild oat and canarygrass patches were discriminated using the indices R, NIR, and NDVI with overall accuracies (OA) of 0.85 to 0.90. In Florida–West, areas infested with wild oat, canarygrass, and ryegrass were discriminated with OA from 0.85 to 0.89. In Florida–East, for the discrimination of the areas infested with wild oat patches, visible wavebands and several vegetation indices provided OA of 0.87 to 0.96. Estimated grass weed area ranged from 56 to 71%, 43 to 47%, and 69 to 80% of the field in the three locations, respectively, with per-class accuracies from 0.87 to 0.94. NDVI was the most efficient vegetation index, with a highly accurate performance in all locations. Our results suggest that mapping grass weed patches in wheat is feasible with high-resolution satellite imagery or aerial photography acquired 2 to 3 wk before crop senescence.


2018 ◽  
Vol 10 (8) ◽  
pp. 1293 ◽  
Author(s):  
Yunpeng Luo ◽  
Tarek S. El-Madany ◽  
Gianluca Filippa ◽  
Xuanlong Ma ◽  
Bernhard Ahrens ◽  
...  

Tree–grass ecosystems are widely distributed. However, their phenology has not yet been fully characterized. The technique of repeated digital photographs for plant phenology monitoring (hereafter referred as PhenoCam) provide opportunities for long-term monitoring of plant phenology, and extracting phenological transition dates (PTDs, e.g., start of the growing season). Here, we aim to evaluate the utility of near-infrared-enabled PhenoCam for monitoring the phenology of structure (i.e., greenness) and physiology (i.e., gross primary productivity—GPP) at four tree–grass Mediterranean sites. We computed four vegetation indexes (VIs) from PhenoCams: (1) green chromatic coordinates (GCC), (2) normalized difference vegetation index (CamNDVI), (3) near-infrared reflectance of vegetation index (CamNIRv), and (4) ratio vegetation index (CamRVI). GPP is derived from eddy covariance flux tower measurement. Then, we extracted PTDs and their uncertainty from different VIs and GPP. The consistency between structural (VIs) and physiological (GPP) phenology was then evaluated. CamNIRv is best at representing the PTDs of GPP during the Green-up period, while CamNDVI is best during the Dry-down period. Moreover, CamNIRv outperforms the other VIs in tracking growing season length of GPP. In summary, the results show it is promising to track structural and physiology phenology of seasonally dry Mediterranean ecosystem using near-infrared-enabled PhenoCam. We suggest using multiple VIs to better represent the variation of GPP.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5423
Author(s):  
Shou-Hao Chiang ◽  
Noel Ivan Ulloa

Wildfires are considered one of the most major hazards and environmental issues worldwide. Recently, Earth observation satellite (EOS) sensors have proven to be effective for wildfire detection, although the quality and usefulness of the data are often hindered by cloud presence. One practical workaround is to combine datasets from multiple sensors. This research presents a methodology that utilizes data of the recently-launched Sentinel-3 sea and land surface temperature radiometer (S3-SLSTR) to reflect its applicability for detecting wildfires. In addition, visible infrared imaging radiometer suite day night band (VIIRS-DNB) imagery was introduced to assure day-night tracking capabilities. The wildfire event in the Indio Maiz Biological Reserve, Nicaragua, during 3–13 April 2018, was the study case. Six S3-SLSTR images were processed to compute spectral indices, such as the normalized difference vegetation index (NDVI), the normalized difference water index (NDWI), and the normalized burn ratio (NBR), to perform image segmentation for estimating the burnt area. The results indicate that 5870.7 ha of forest was affected during the wildfire, close to the 5945 ha reported by local authorities. In this study, the fire expansion was delineated and tracked in the Indio Maiz Biological Reserve using a modified fast marching method on nighttime-sensed temporal VIIRS-DNB. This study shows the importance of S3-SLSRT for wildfire monitoring and how it can be complemented with VIIRS-DNB to track burning biomass at daytime and nighttime.


2020 ◽  
Vol 133 (10) ◽  
pp. 2853-2868
Author(s):  
Mahlet T. Anche ◽  
Nicholas S. Kaczmar ◽  
Nicolas Morales ◽  
James W. Clohessy ◽  
Daniel C. Ilut ◽  
...  

Abstract Key message Heritable variation in phenotypes extracted from multi-spectral images (MSIs) and strong genetic correlations with end-of-season traits indicates the value of MSIs for crop improvement and modeling of plant growth curve. Abstract Vegetation indices (VIs) derived from multi-spectral imaging (MSI) platforms can be used to study properties of crop canopy, providing non-destructive phenotypes that could be used to better understand growth curves throughout the growing season. To investigate the amount of variation present in several VIs and their relationship with important end-of-season traits, genetic and residual (co)variances for VIs, grain yield and moisture were estimated using data collected from maize hybrid trials. The VIs considered were Normalized Difference Vegetation Index (NDVI), Green NDVI, Red Edge NDVI, Soil-Adjusted Vegetation Index, Enhanced Vegetation Index and simple Ratio of Near Infrared to Red (Red) reflectance. Genetic correlations of VIs with grain yield and moisture were used to fit multi-trait models for prediction of end-of-season traits and evaluated using within site/year cross-validation. To explore alternatives to fitting multiple phenotypes from MSI, random regression models with linear splines were fit using data collected in 2016 and 2017. Heritability estimates ranging from (0.10 to 0.82) were observed, indicating that there exists considerable amount of genetic variation in these VIs. Furthermore, strong genetic and residual correlations of the VIs, NDVI and NDRE, with grain yield and moisture were found. Considerable increases in prediction accuracy were observed from the multi-trait model when using NDVI and NDRE as a secondary trait. Finally, random regression with a linear spline function shows potential to be used as an alternative to mixed models to fit VIs from multiple time points.


Author(s):  
Eniel Rodríguez-Machado ◽  
Osmany Aday-Díaz ◽  
Luis Hernández-Santana ◽  
Jorge Luís Soca-Muñoz ◽  
Rubén Orozco-Morales

Precision agriculture, making use of the spatial and temporal variability of cultivable land, allows farmers to refine fertilization, control field irrigation, estimate planting productivity, and detect pests and disease in crops. To that end, this paper identifies the spectral reflectance signature of brown rust (Puccinia melanocephala) and orange rust (Puccinia kuehnii), which contaminate sugar cane leaves (Saccharum spp.). By means of spectrometry, the mean values and standard deviations of the spectral reflectance signature are obtained for five levels of contamination of the leaves in each type of rust, observing the greatest differences between healthy and diseased leaves in the red (R) and near infrared (NIR) bands. With the results obtained, a multispectral camera was used to obtain images of the leaves and calculate the Normalized Difference Vegetation Index (NDVI). The results identified the presence of both plagues by differentiating healthy from contaminated leaves through the index value with an average difference of 11.9% for brown rust and 9.9% for orange rust.


Author(s):  
Abdon Francisco Aureliano Netto ◽  
Rodrigo Nogueira Martins ◽  
Guilherme Silverio Aquino De Souza ◽  
Fernando Ferreira Lima Dos Santos ◽  
Jorge Tadeu Fim Rosas

This study aimed to modify a webcam by replacing its near-infrared (NIR) blocking filter to a low-cost red, green and blue (RGB) filter for obtaining NIR images and to evaluate its performance in two agricultural applications. First, the sensitivity of the webcam to differentiate normalized difference vegetation index (NDVI) levels through five nitrogen (N) doses applied to the Batatais grass (Paspalum notatum Flugge) was verified. Second, images from maize crops were processed using different vegetation indices, and thresholding methods with the aim of determining the best method for segmenting crop canopy from the soil. Results showed that the webcam sensor was capable of detecting the effect of N doses through different NDVI values at 7 and 21 days after N application. In the second application, the use of thresholding methods, such as Otsu, Manual, and Bayes when previously processed by vegetation indices showed satisfactory accuracy (up to 73.3%) in separating the crop canopy from the soil.


2020 ◽  
Author(s):  
Andres Almeida-Ñauñay ◽  
Rosa M. Benito ◽  
Miguel Quemada ◽  
Juan Carlos Losada ◽  
Ana Maria Tarquis

<p>Grassland ecosystems are extremely complex and set up intricate structures, whose characteristics and dynamic properties are greatly influenced by climate and meteorological patterns. Climate change and global warming are factors that could impact negatively in the quality and productivity of these ecosystems.</p><p>Remote sensing techniques have been demonstrated as a powerful tool for monitoring extensive areas. In this study, two semi-arid grassland plots were selected in the centre of Spain. This region is characterized by low precipitation and moderate productivity per unit. Through scientific research, spectral vegetation indices (VIs) have been developed to characterize vegetation cover. The most common VI is the Normalized Difference Vegetation Index (NDVI). However, in vegetation scarcity conditions, bare soil reflectance is increased, and the feasibility of NDVI is reduced. This study aims to perform a method to compare soil and agro-climatic variables effect on vegetation time-series indices.</p><p>The construction of the time series was based on multispectral images of MODIS TERRA (MOD09A1.006) product acquired from 2002 till 2018. Three pixels with a temporal resolution of 8 days and a spatial resolution of 500 x 500 m were chosen in each area. To estimate and analyse VIs series, Red (620-670 nm) and Near Infrared (841-876 nm) channels were extracted and filtered by the quality of pixel. All spectral bands showed statistically significant differences confirming that both areas presented different soil properties. Moreover, average annual precipitation was different in each area of study.</p><p>NDVI calculation is only based on NIR and RED bands. To improve the estimation of vegetation in semi-arid areas, several indices have been developed to minimize the soil effect. Each one of them incorporates soil influence in a different way, i.e., Soil Adjusted Vegetation Index (SAVI) adds a constant soil adjustment factor (L), whereas, MSAVI, incorporate an L variable and dependant on soil characteristics.</p><p>Recurrence plots (RP) and recurrence quantification analysis (RQA) were computed to characterize the influence of agro-climatic variables in vegetation index dynamics. Characterization was based on various RQA measures, such as Determinism (DET), average diagonal length (LT) or entropy (ENT).</p><p>Our results showed different RPs depending on the area, VI utilized and precipitation. MSAVI patterns were further distinct, meanwhile, NDVI showed a noisy pattern. LT values in MSAVI were higher than in SAVI implying that MSAVI recurrent events are much longer than SAVI. Simultaneously, LT and DET values in ZSO, with a higher rain, were above ZEA values in MSAVI.</p><p>This indicates that incorporating more detailed information of soil and precipitation reinforce vegetation index estimation and allow to obtain a more distinct pattern of the time series. Therefore, in arid-semiarid grasslands, they should be considered.</p><p><strong>ACKNOWLEDGEMENTS</strong></p><p>The authors acknowledge support from Project No. PGC2018-093854-B-I00 of the Spanish <em>Ministerio de Ciencia Innovación y Universidades</em> of Spain and the funding from the Comunidad de Madrid (Spain) and Structural Funds 2014-2020 512 (ERDF and ESF), through project AGRISOST-CM S2018/BAA-4330, are highly appreciated.</p>


2005 ◽  
Vol 59 (6) ◽  
pp. 836-843 ◽  
Author(s):  
Jennifer Pontius ◽  
Richard Hallett ◽  
Mary Martin

Near-infrared reflectance spectroscopy was evaluated for its effectiveness at predicting pre-visual decline in eastern hemlock trees. An ASD FieldSpec Pro FR field spectroradiometer measuring 2100 contiguous 1-nm-wide channels from 350 nm to 2500 nm was used to collect spectra from fresh hemlock foliage. Full spectrum partial least squares (PLS) regression equations and reduced stepwise linear regression equations were compared. The best decline predictive model was a 6-term linear regression equation ( R2 = 0.71, RMSE = 0.591) based on: Carter Miller Stress Index (R694/R760), Derivative Chlorophyll Index (FD705/FD723), Normalized Difference Vegetation Index ((R800 – R680)/(R800 + R680)), R950, R1922, and FD1388. Accuracy assessment showed that this equation predicted an 11-class decline rating with a 1-class tolerance accuracy of 96% and differentiated healthy trees from those in very early decline with 72% accuracy. These results indicate that narrow-band sensors could be developed to detect very early stages of hemlock decline, before visual symptoms are apparent. This capability would enable land managers to identify early hemlock woolly adelgid infestations and monitor forest health over large areas of the landscape.


2009 ◽  
Vol 26 (7) ◽  
pp. 1354-1366 ◽  
Author(s):  
Fangfang Yu ◽  
Xiangqian Wu

Abstract Desert-based vicarious calibration plays an important role in generating long-term reliable satellite radiances for the visible and near-infrared channels of the Advanced Very High Resolution Radiometer (AVHRR). Lacking an onboard calibration device, the AVHRR relies on reflected radiances from a target site, for example, a large desert, to calibrate its solar reflective channels. While the radiometric characteristics of the desert may be assumed to be stable, the reflected radiances from the target can occasionally be affected by the presence of clouds, sand storms, vegetation, and wet surfaces. These contaminated pixels must be properly identified and removed to ensure calibration performance. This paper describes an algorithm for removing the contaminated pixels from AVHRR measurements taken over the Libyan Desert based on the characteristics of consistent normalized difference vegetation index (NDVI) land-cover stratification. An NDVI histogram-determined threshold is first applied to screen pixels contaminated with vegetation in each individual AVHRR observation. The resulting analyses show that the vegetation growth inside the desert target has a negligibly small impact on the AVHRR operational calibration results. Two criteria based on the maximum NDVI compositing technique are then employed to remove pixels contaminated with clouds, severe sand storms, and wet sand surfaces. Compared to other cloud-screening methods, this algorithm is capable of not only identifying high-reflectance clouds, but also removing the low reflectance of wet surfaces and the nearly indifferent reflectance of severe dust storms. The use of clear pixels appears to improve AVHRR calibration accuracy in the first 3–4 yr after satellite launch.


Sign in / Sign up

Export Citation Format

Share Document