scholarly journals Integrating Moving Platforms in a SLAM Agorithm for Pedestrian Navigation

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4367
Author(s):  
Susanna Kaiser ◽  
Christopher Lang

In 3D pedestrian indoor navigation applications, position estimation based on inertial measurement units (IMUss) fails when moving platforms (MPs), such as escalators and elevators, are not properly implemented. In this work, we integrate the MPs in an upper 3D-simultaneous localization and mapping (SLAM) algorithm which is cascaded to the pedestrian dead-reckoning (PDR) technique. The step and heading measurements resulting from the PDR are fed to the SLAM that additionally estimates a map of the environment during the walk in order to reduce the remaining drift. For integrating MPs, we present a new proposal function for the particle filter implementation of the SLAM to account for the presence of MPs. In addition, a new weighting function for features such as escalators and elevators is developed and the features are learned and stored in the learned map. With this, locations of MPs are favored when revisiting the MPs again. The results show that the mean height error is about 0.1 m and the mean position error is less than 1 m for walks with long distances along the floors, even when using multiple floor level changes with different numbers of floors in a multistory environment. For walks with short walking distances and many floor level changes, the mean height error can be higher (about 0.5 m). The final floor number is in all cases except one correctly estimated.

Information ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 464
Author(s):  
Susanna Kaiser

In emergency scenarios, such as a terrorist attack or a building on fire, it is desirable to track first responders in order to coordinate the operation. Pedestrian tracking methods solely based on inertial measurement units in indoor environments are candidates for such operations since they do not depend on pre-installed infrastructure. A very powerful indoor navigation method represents collaborative simultaneous localization and mapping (collaborative SLAM), where the learned maps of several users can be combined in order to help indoor positioning. In this paper, maps are estimated from several similar trajectories (multiple users) or one user wearing multiple sensors. They are combined successively in order to obtain a precise map and positioning. For reducing complexity, the trajectories are divided into small portions (sliding window technique) and are partly successively applied to the collaborative SLAM algorithm. We investigate successive combinations of the map portions of several pedestrians and analyze the resulting position accuracy. The results depend on several parameters, e.g., the number of users or sensors, the sensor drifts, the amount of revisited area, the number of iterations, and the windows size. We provide a discussion about the choice of the parameters. The results show that the mean position error can be reduced to ≈0.5 m when applying partly successive collaborative SLAM.


Author(s):  
A. Masiero ◽  
H. Perakis ◽  
J. Gabela ◽  
C. Toth ◽  
V. Gikas ◽  
...  

Abstract. The increasing demand for reliable indoor navigation systems is leading the research community to investigate various approaches to obtain effective solutions usable with mobile devices. Among the recently proposed strategies, Ultra-Wide Band (UWB) positioning systems are worth to be mentioned because of their good performance in a wide range of operating conditions. However, such performance can be significantly degraded by large UWB range errors; mostly, due to non-line-of-sight (NLOS) measurements. This paper considers the integration of UWB with vision to support navigation and mapping applications. In particular, this work compares positioning results obtained with a simultaneous localization and mapping (SLAM) algorithm, exploiting a standard and a Time-of-Flight (ToF) camera, with those obtained with UWB, and then with the integration of UWB and vision. For the latter, a deep learning-based recognition approach was developed to detect UWB devices in camera frames. Such information is both introduced in the navigation algorithm and used to detect NLOS UWB measurements. The integration of this information allowed a 20% positioning error reduction in this case study.


2014 ◽  
Vol 556-562 ◽  
pp. 2248-2251
Author(s):  
Xiao Kun Leng ◽  
Xin Wei Wang ◽  
Song Hao Piao

Applications on Multi-agent system have been widely studied recently. The positioning of Robotic system is to estimate the position and posture and accurate position estimation. FastSLAM is a SLAM algorithm based on particle filtering, which can perform positioning fast and has been widely applied. This paper applied the genetic particle filtering into SLAM problem to optimize the SLAM algorithm. We present the algorithms based on genetic particle filtering which can obviously reduce the number of particles needed in FastSLAM. The experimental results show that the improvement measures can effectively improve the performance of the algorithm, so that it enables them to maintain a reliable positioning.


2013 ◽  
Vol 694-697 ◽  
pp. 1931-1936
Author(s):  
Feng Ping Cao ◽  
Rong Ben Wang ◽  
Liang Xiu Zhang

In order to overcome the accumulated error in traditional localization methods for intelligent vehicle such as dead reckoning and visual odometry, a simultaneous localization and mapping(SLAM) algorithm based on stereo vision was presented in the paper. Firstly, the interrelated elements in the localization method were defined, and the probability model for intelligent vehicle localization was proposed, then the motion and observation model were established, and the detailed implementation of the introduced localization algorithm was given. Finally, an experiment was designed to confirm the effectiveness of the proposed method. Experimental results indicate that the algorithm can realize three-dimensional motion estimation of intelligent vehicle and can improve the positioning precision effectively.


Author(s):  
M. C. Hung ◽  
K. W. Chiang

Abstract. Location based service (LBS) is a popular issue in recent years, which can be applied widely. The most common one is providing the local information and the guide of the Point of Interesting (POI) to users, which means positioning is the necessary technique to put LBS into practice. In an outdoor scenario, the user’s position can be obtained relying on the Global Navigation Satellite System (GNSS), however, the signal of GNSS might be blocked in a building. So, many indoor positioning techniques are developed in the decades, which have the pros and cons respectively. This paper proposes an indoor positioning technique by integrating Pedestrian Dead Reckoning (PDR) with the image-based positioning method, which can decrease the cost significantly because it only needs a camera built-in the smartphone. In the first experiment, we verify the accuracy of positioning by the proposed method, that the mean error in the horizontal direction is about 0.25 meters. In the following experiment, comparing with the misclosure of PDR only and PDR integrated with the proposed method, it can decrease from 8.53% to 1.44%. The improvement is about 83%, therefore, this method is suitable for applying to indoor navigation.


2020 ◽  
Vol 49 (5) ◽  
pp. 49-57
Author(s):  
A. V. Ksendzuk ◽  
E. A. Surmin ◽  
V. V. Kachesov ◽  
S. O. Zhdanov ◽  
K. S. Shakhalov

Results of an experimental study of a local navigation system based on the processing signals from broadcast sources presented. The results of the development of processing algorithms for point-to-point coordinates estimation of the object are presented. The results of the development of algorithms for trajectories estimation are presented. In performed simulation the possibility of obtaining submeter position estimation accuracy in the proposed system is shown. Development results of the navigation module demonstrator are presented. The results of experimental work in difficult navigation conditions, in the presence of shading, reflections and other factors, are presented. It is shown that the developed navigation module allows in the open space near buildings which partially obscuring the satellite systems signals to obtain accuracy higher than the GNSS navigation equipment. In indoor environment in the absence of satellite navigation signals, the developed module shows positioning accuracy not worse than 1.5 meters and provides a measurement rate 1 Hz and better.


Geomatics ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 148-176
Author(s):  
Maan Khedr ◽  
Naser El-Sheimy

Mobile location-based services (MLBS) are attracting attention for their potential public and personal use for a variety of applications such as location-based advertisement, smart shopping, smart cities, health applications, emergency response, and even gaming. Many of these applications rely on Inertial Navigation Systems (INS) due to the degraded GNSS services indoors. INS-based MLBS using smartphones is hindered by the quality of the MEMS sensors provided in smartphones which suffer from high noise and errors resulting in high drift in the navigation solution rapidly. Pedestrian dead reckoning (PDR) is an INS-based navigation technique that exploits human motion to reduce navigation solution errors, but the errors cannot be eliminated without aid from other techniques. The purpose of this study is to enhance and extend the short-term reliability of PDR systems for smartphones as a standalone system through an enhanced step detection algorithm, a periodic attitude correction technique, and a novel PCA-based motion direction estimation technique. Testing shows that the developed system (S-PDR) provides a reliable short-term navigation solution with a final positioning error that is up to 6 m after 3 min runtime. These results were compared to a PDR solution using an Xsens IMU which is known to be a high grade MEMS IMU and was found to be worse than S-PDR. The findings show that S-PDR can be used to aid GNSS in challenging environments and can be a viable option for short-term indoor navigation until aiding is provided by alternative means. Furthermore, the extended reliable solution of S-PDR can help reduce the operational complexity of aiding navigation systems such as RF-based indoor navigation and magnetic map matching as it reduces the frequency by which these aiding techniques are required and applied.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Nick Le Large ◽  
Frank Bieder ◽  
Martin Lauer

Abstract For the application of an automated, driverless race car, we aim to assure high map and localization quality for successful driving on previously unknown, narrow race tracks. To achieve this goal, it is essential to choose an algorithm that fulfills the requirements in terms of accuracy, computational resources and run time. We propose both a filter-based and a smoothing-based Simultaneous Localization and Mapping (SLAM) algorithm and evaluate them using real-world data collected by a Formula Student Driverless race car. The accuracy is measured by comparing the SLAM-generated map to a ground truth map which was acquired using high-precision Differential GPS (DGPS) measurements. The results of the evaluation show that both algorithms meet required time constraints thanks to a parallelized architecture, with GraphSLAM draining the computational resources much faster than Extended Kalman Filter (EKF) SLAM. However, the analysis of the maps generated by the algorithms shows that GraphSLAM outperforms EKF SLAM in terms of accuracy.


2021 ◽  
Vol 13 (12) ◽  
pp. 2351
Author(s):  
Alessandro Torresani ◽  
Fabio Menna ◽  
Roberto Battisti ◽  
Fabio Remondino

Mobile and handheld mapping systems are becoming widely used nowadays as fast and cost-effective data acquisition systems for 3D reconstruction purposes. While most of the research and commercial systems are based on active sensors, solutions employing only cameras and photogrammetry are attracting more and more interest due to their significantly minor costs, size and power consumption. In this work we propose an ARM-based, low-cost and lightweight stereo vision mobile mapping system based on a Visual Simultaneous Localization And Mapping (V-SLAM) algorithm. The prototype system, named GuPho (Guided Photogrammetric System) also integrates an in-house guidance system which enables optimized image acquisitions, robust management of the cameras and feedback on positioning and acquisition speed. The presented results show the effectiveness of the developed prototype in mapping large scenarios, enabling motion blur prevention, robust camera exposure control and achieving accurate 3D results.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1549
Author(s):  
Humberto Martínez-Barberá ◽  
Pablo Bernal-Polo ◽  
David Herrero-Pérez

This paper presents a framework for processing, modeling, and fusing underwater sensor signals to provide a reliable perception for underwater localization in structured environments. Submerged sensory information is often affected by diverse sources of uncertainty that can deteriorate the positioning and tracking. By adopting uncertain modeling and multi-sensor fusion techniques, the framework can maintain a coherent representation of the environment, filtering outliers, inconsistencies in sequential observations, and useless information for positioning purposes. We evaluate the framework using cameras and range sensors for modeling uncertain features that represent the environment around the vehicle. We locate the underwater vehicle using a Sequential Monte Carlo (SMC) method initialized from the GPS location obtained on the surface. The experimental results show that the framework provides a reliable environment representation during the underwater navigation to the localization system in real-world scenarios. Besides, they evaluate the improvement of localization compared to the position estimation using reliable dead-reckoning systems.


Sign in / Sign up

Export Citation Format

Share Document