scholarly journals Data Exchange Interoperability in IoT Ecosystem for Smart Parking and EV Charging

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4404 ◽  
Author(s):  
Anastasiia Karpenko ◽  
Tuomas Kinnunen ◽  
Manik Madhikermi ◽  
Jeremy Robert ◽  
Kary Främling ◽  
...  

Many domains are trying to integrate with the Internet of Things (IoT) ecosystem, such as public administrations starting smart city initiatives all over the world. Cities are becoming smart in many ways: smart mobility, smart buildings, smart environment and so on. However, the problem of non-interoperability in the IoT hinders the seamless communication between all kinds of IoT devices. Different domain specific IoT applications use different interoperability standards. These standards are usually not interoperable with each other. IoT applications and ecosystems therefore tend to use a vertical communication model that does not allow data sharing horizontally across different IoT ecosystems. In 2014, The Open Group published two domain-independent IoT messaging standards, O-MI and O-DF, aiming to solve the interoperability problem. In this article we describe the practical use of O-MI/O-DF standards for reaching interoperability in a mobile application for the smart city context, in particular for the Smart Mobility domain, electric vehicle (EV) charging case study. The proof-of-concept of the smart EV charging ecosystem with mobile application user interface was developed as a part of an EU (Horizon 2020) Project bIoTope.

Author(s):  
J. Domingo ◽  
K. A. Cabello ◽  
G. A. Rufino ◽  
L. Hilario ◽  
M. J. Villanueva-Jerez ◽  
...  

Abstract. ICT is one of the technological enablers of a smart city which facilitates the developments in various sectors of the community such as in governance, transportation, education, safety, tourism, and communication. Development of smartphone applications have directly contributed to areas of smart living, smart people, smart governance, and smart mobility as it provides several features catering digital services in the city and flexible utilization of the city services. However, smart city development is not merely the creation of digital services for the citizens but instead involves a two-way communication between the government and citizen’s collaborative processes and digital participation. The purpose of this paper is to provide a framework for a mobile tool wherein people can easily access the most essential everyday city services and in the same manner provide the city authorities to gather relevant information from the application through review of literature and other relevant documents.


2021 ◽  
Vol 12 (4) ◽  
pp. 188
Author(s):  
Tomi Paalosmaa ◽  
Miadreza Shafie-khah

The global trend of urbanization and growing environmental awareness have risen concerns and demands to develop cities to become smarter. There is a grave need for ambitious sustainability strategies and projects, which can aid cities intelligently and comprehensively in this task. European Union (EU) launched 2014 the Horizon 2020 program (aka Horizon Europe), aiming to encourage the EU nations and their cities to take action to reach carbon neutrality through projects striving to smart city development. By promoting innovative, efficient, far-reaching, and replicable solutions, from the fields of smart energy production and consumption, traffic and mobility, digitalization and information communication technology, and citizen engagement, the objectives of the smart city strategies can be achieved. Horizon 2020 funded IRIS Smart Cities project was launched in 2017. One of the follower cities in the project has been the City of Vaasa in Finland. Vaasa’s climate objective is to reach carbon neutrality by 2030. In order to achieve this goal, the city has taken several decisive measures to enhance de-carbonization during recent years. One essential target for de-carbonization activities has been traffic and mobility. The primary purpose of the research conducted was to study the smart mobility, vehicle-to-grid (V2G), and second life battery solutions in the IRIS Smart Cities project, demonstrated first by the Lighthouse cities and then to be replicated in the City of Vaasa. The aim was to study which importance and prioritization these particular integrated solutions would receive in the City of Vaasa’s replication plan led by the City of Vaasa’s IRIS project task team of 12 experts, with the contribution of the key partners and stakeholders. Additionally, the aim was to study the potential of the integrated solutions in question to be eventually implemented in the Vaasa environment, and the benefit for the city’s ultimate strategy to reach carbon neutrality by 2030. The secondary object was to study the solutions’ compatibility with the IRIS lighthouse cities’ demonstrations and gathered joined experiences concerning the smart and sustainable mobility and vehicle-to-grid solutions, and utilization of 2nd life batteries. The results of the research indicated, that the innovative smart mobility solutions, including vehicle-to-grid and second life battery schemes, are highly relevant not only to the IRIS Lighthouse cities, but they also present good potential for the City of Vaasa in the long run, being compatible with the city’s climate and de-carbonization goals.


Every day, we are stepping towards to lead a smart life within a smart world, thanks of IoT smart applications. The continually need for new urban systems including smart infrastructures, smart energy grids and smart mobility systems makes appear of a new concept, named: “Smart City”. This concept represents one of the most promising challenges of IoT applications since it involves the enhancement of our lifestyle. Among its promising advantage we can cites: the reducing resource consumption, the real-time guidance for citizens, the transportation facilities, etc. In this paper, we propose, first, a literature review on researches addressing many aspects of Smart City. Second, we provide a comparative study between these researches on the basic of multiple criteria like interoperability, scalability, security, etc.


Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 902
Author(s):  
Sungwon Lee ◽  
Muhammad Azfar Azfar Yaqub ◽  
Dongkyun Kim

The principle of Smart Cities is the interconnection of services, based on a network of Internet of Things (IoT) devices. As the number of IoT devices continue to grow, the demand to organize and maintain the IoT applications is increased. Therefore, the solutions for smart city should have the ability to efficiently utilize the resources and their associated challenges. Neighbor aware solutions can enhance the capabilities of the smart city. In this article, we briefly overview the neighbor aware solutions and challenges in smart cities. We then categorize the neighbor aware solutions and discuss the possibilities using the collaboration among neighbors to extend the lifetime of IoT devices. We also propose a new duty cycle MAC protocol with assistance from the neighbors to extend the lifetime of the nodes. Simulation results further coagulate the impact of neighbor assistance on the performance of IoT devices in smart cities.


Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4798 ◽  
Author(s):  
Claudio Badii ◽  
Pierfrancesco Bellini ◽  
Angelo Difino ◽  
Paolo Nesi ◽  
Gianni Pantaleo ◽  
...  

Smart Cities are approaching the Internet of Things (IoT) World. Most of the first-generation Smart City solutions are based on Extract Transform Load (ETL); processes and languages that mainly support pull protocols for data gathering. IoT solutions are moving forward to event-driven processes using push protocols. Thus, the concept of IoT applications has turned out to be widespread; but it was initially “implemented” with ETL; rule-based solutions; and finally; with true data flows. In this paper, these aspects are reviewed, highlighting the requirements for smart city IoT applications and in particular, the ones that implement a set of specific MicroServices for IoT Applications in Smart City contexts. Moreover; our experience has allowed us to implement a suite of MicroServices for Node-RED; which has allowed for the creation of a wide range of new IoT applications for smart cities that includes dashboards, IoT Devices, data analytics, discovery, etc., as well as a corresponding Life Cycle. The proposed solution has been validated against a large number of IoT applications, as it can be verified by accessing the https://www.Snap4City.org portal; while only three of them have been described in the paper. In addition, the reported solution assessment has been carried out by a number of smart city experts. The work has been developed in the framework of the Select4Cities PCP (PreCommercial Procurement), funded by the European Commission as Snap4City platform.


2021 ◽  
Vol 10 (1) ◽  
pp. 13
Author(s):  
Claudia Campolo ◽  
Giacomo Genovese ◽  
Antonio Iera ◽  
Antonella Molinaro

Several Internet of Things (IoT) applications are booming which rely on advanced artificial intelligence (AI) and, in particular, machine learning (ML) algorithms to assist the users and make decisions on their behalf in a large variety of contexts, such as smart homes, smart cities, smart factories. Although the traditional approach is to deploy such compute-intensive algorithms into the centralized cloud, the recent proliferation of low-cost, AI-powered microcontrollers and consumer devices paves the way for having the intelligence pervasively spread along the cloud-to-things continuum. The take off of such a promising vision may be hurdled by the resource constraints of IoT devices and by the heterogeneity of (mostly proprietary) AI-embedded software and hardware platforms. In this paper, we propose a solution for the AI distributed deployment at the deep edge, which lays its foundation in the IoT virtualization concept. We design a virtualization layer hosted at the network edge that is in charge of the semantic description of AI-embedded IoT devices, and, hence, it can expose as well as augment their cognitive capabilities in order to feed intelligent IoT applications. The proposal has been mainly devised with the twofold aim of (i) relieving the pressure on constrained devices that are solicited by multiple parties interested in accessing their generated data and inference, and (ii) and targeting interoperability among AI-powered platforms. A Proof-of-Concept (PoC) is provided to showcase the viability and advantages of the proposed solution.


Author(s):  
Lichao Xu ◽  
Szu-Yun Lin ◽  
Andrew W. Hlynka ◽  
Hao Lu ◽  
Vineet R. Kamat ◽  
...  

AbstractThere has been a strong need for simulation environments that are capable of modeling deep interdependencies between complex systems encountered during natural hazards, such as the interactions and coupled effects between civil infrastructure systems response, human behavior, and social policies, for improved community resilience. Coupling such complex components with an integrated simulation requires continuous data exchange between different simulators simulating separate models during the entire simulation process. This can be implemented by means of distributed simulation platforms or data passing tools. In order to provide a systematic reference for simulation tool choice and facilitating the development of compatible distributed simulators for deep interdependent study in the context of natural hazards, this article focuses on generic tools suitable for integration of simulators from different fields but not the platforms that are mainly used in some specific fields. With this aim, the article provides a comprehensive review of the most commonly used generic distributed simulation platforms (Distributed Interactive Simulation (DIS), High Level Architecture (HLA), Test and Training Enabling Architecture (TENA), and Distributed Data Services (DDS)) and data passing tools (Robot Operation System (ROS) and Lightweight Communication and Marshalling (LCM)) and compares their advantages and disadvantages. Three specific limitations in existing platforms are identified from the perspective of natural hazard simulation. For mitigating the identified limitations, two platform design recommendations are provided, namely message exchange wrappers and hybrid communication, to help improve data passing capabilities in existing solutions and provide some guidance for the design of a new domain-specific distributed simulation framework.


2020 ◽  
Vol 12 (14) ◽  
pp. 5595 ◽  
Author(s):  
Ana Lavalle ◽  
Miguel A. Teruel ◽  
Alejandro Maté ◽  
Juan Trujillo

Fostering sustainability is paramount for Smart Cities development. Lately, Smart Cities are benefiting from the rising of Big Data coming from IoT devices, leading to improvements on monitoring and prevention. However, monitoring and prevention processes require visualization techniques as a key component. Indeed, in order to prevent possible hazards (such as fires, leaks, etc.) and optimize their resources, Smart Cities require adequate visualizations that provide insights to decision makers. Nevertheless, visualization of Big Data has always been a challenging issue, especially when such data are originated in real-time. This problem becomes even bigger in Smart City environments since we have to deal with many different groups of users and multiple heterogeneous data sources. Without a proper visualization methodology, complex dashboards including data from different nature are difficult to understand. In order to tackle this issue, we propose a methodology based on visualization techniques for Big Data, aimed at improving the evidence-gathering process by assisting users in the decision making in the context of Smart Cities. Moreover, in order to assess the impact of our proposal, a case study based on service calls for a fire department is presented. In this sense, our findings will be applied to data coming from citizen calls. Thus, the results of this work will contribute to the optimization of resources, namely fire extinguishing battalions, helping to improve their effectiveness and, as a result, the sustainability of a Smart City, operating better with less resources. Finally, in order to evaluate the impact of our proposal, we have performed an experiment, with non-expert users in data visualization.


2021 ◽  
Vol 13 (9) ◽  
pp. 4716
Author(s):  
Moustafa M. Nasralla

To develop sustainable rehabilitation systems, these should consider common problems on IoT devices such as low battery, connection issues and hardware damages. These should be able to rapidly detect any kind of problem incorporating the capacity of warning users about failures without interrupting rehabilitation services. A novel methodology is presented to guide the design and development of sustainable rehabilitation systems focusing on communication and networking among IoT devices in rehabilitation systems with virtual smart cities by using time series analysis for identifying malfunctioning IoT devices. This work is illustrated in a realistic rehabilitation simulation scenario in a virtual smart city using machine learning on time series for identifying and anticipating failures for supporting sustainability.


Sign in / Sign up

Export Citation Format

Share Document