scholarly journals Multipotent Systems: Combining Planning, Self-Organization, and Reconfiguration in Modular Robot Ensembles

Sensors ◽  
2018 ◽  
Vol 19 (1) ◽  
pp. 17 ◽  
Author(s):  
Oliver Kosak ◽  
Constantin Wanninger ◽  
Alwin Hoffmann ◽  
Hella Ponsar ◽  
Wolfgang Reif

Mobile multirobot systems play an increasing role in many disciplines. Their capabilities can be used, e.g., to transport workpieces in industrial applications or to support operational forces in search and rescue scenarios, among many others. Depending on the respective application, the hardware design and accompanying software of mobile robots are of various forms, especially for integrating different sensors and actuators. Concerning this design, robots of one system compared to each other can be classified to exclusively be either homogeneous or heterogeneous, both resulting in different system properties. While homogeneously configured systems are known to be robust against failures through redundancy but are highly specialized for specific use cases, heterogeneously designed systems can be used for a broad range of applications but suffer from their specialization, i.e., they can only hardly compensate for the failure of one specialist. Up to now, there has been no known approach aiming to unify the benefits of both these types of system. In this paper, we present our approach to filling this gap by introducing a reference architecture for mobile robots that defines the interplay of all necessary technologies for achieving this goal. We introduce the class of robot systems implementing this architecture as multipotent systems that bring together the benefits of both system classes, enabling homogeneously designed robots to become heterogeneous specialists at runtime. When many of these robots work together, we call the structure of this cooperation an ensemble. To achieve multipotent ensembles, we also integrate reconfigurable and self-descriptive hardware (i.e., sensors and actuators) in this architecture, which can be freely combined to change the capabilities of robots at runtime. Because typically a high degree of autonomy in such systems is a prerequisite for their practical usage, we also present the integration of necessary mechanisms and algorithms for achieving the systems’ multipotency. We already achieved the first results with robots implementing our approach of multipotent systems in real-world experiments as well as in a simulation environment, which we present in this paper.

2014 ◽  
Vol 26 (3) ◽  
pp. 369-376 ◽  
Author(s):  
Xuefeng Dai ◽  
◽  
Zhifeng Yao ◽  
Yan Zhao ◽  
◽  
...  

<div class=""abs_img""><img src=""[disp_template_path]/JRM/abst-image/00260003/10.jpg"" width=""300"" />Teammates trajectories</span></div> For reasons of production cost and differences in manufacturing dates for mobile robots, individual robots on a robot team have different processing, movement, and detection abilities. To maximize the potential ability of individual robots and minimize overall exploration time in unknown environments, this paper proposes a novel discrete adaptive auction-based algorithm for coordinating multirobot systems (MRSs). A utility calculation scheme that takes into account the dispersion of teammates is presented, followed by an identical performance index formula that converges to a value for measuring differences in exploration efficiency. The performance measure is taken into account in calculating bids for exploration tasks. We compared our results to other exploration strategies by simulation and results show improved exploration time. </span>


2022 ◽  
Vol 12 (1) ◽  
pp. 419
Author(s):  
Ferdinando Vitolo ◽  
Andrea Rega ◽  
Castrese Di Marino ◽  
Agnese Pasquariello ◽  
Alessandro Zanella ◽  
...  

Enabling technologies that drive Industry 4.0 and smart factories are pushing in new equipment and system development also to prevent human workers from repetitive and non-ergonomic tasks inside manufacturing plants. One of these tasks is the order-picking which consists in collecting parts from the warehouse and distributing them among the workstations and vice-versa. That task can be completely performed by a Mobile Manipulator that is composed by an industrial manipulator assembled on a Mobile Robot. Although the Mobile Manipulators implementation brings advantages to industrial applications, they are still not widely used due to the lack of dedicated standards on control and safety. Furthermore, there are few integrated solutions and no specific or reference point allowing the safe integration of mobile robots and cobots (already owned by company). This work faces the integration of a generic mobile robot and collaborative robot selected from an identified set of both systems. The paper presents a safe and flexible mechatronic interface developed by using MBSE principles, multi-domain modeling, and adopting preliminary assumptions on the hardware and software synchronization level of both involved systems. The interface enables the re-using of owned robot systems differently from their native tasks. Furthermore, it provides an additional and redundant safety level by enabling power and force limiting both during cobot positioning and control system faulting.


Author(s):  
Andreas Blank ◽  
Engin Karlidag ◽  
Lukas Zikeli ◽  
Maximilian Metzner ◽  
Jörg Franke

AbstractConcurrent with autonomous robots, teleoperation gains importance in industrial applications. This includes human–robot cooperation during complex or harmful operations and remote intervention. A key role in teleoperation is the ability to translate operator inputs to robot movements. Therefore, providing different motion control types is a decisive aspect due to the variety of tasks to be expected. For a wide range of use-cases, a high degree of interoperability to a variety of robot systems is required. In addition, the control input should support up-to-date Human Machine Interfaces. To address the existing challenges, we present a middleware for teleoperation of industrial robots, which is adaptive regarding motion control types. Thereby the middleware relies on an open-source, robot meta-operating system and a standardized communication. Evaluation is performed within defined tasks utilizing different articulated robots, whereby performance and determinacy are quantified. An implementation sample of the method is available on: https://github.com/FAU-FAPS/adaptive_motion_control.


2020 ◽  
Vol 6 (3) ◽  
pp. 368-371
Author(s):  
Julia Demmer ◽  
A. Kitzig ◽  
N. Schlage ◽  
G. Stockmanns ◽  
E. Naroska

AbstractPatients often report an effect after surgery of the anterior cruciate ligament which is called "giving way". This manifest itself by a drop of the knee or a felt instability. This phenomenon is difficult to measure and validate because it usually does not occur regularly and is not reproducible under laboratory conditions. The Knetex project takes up this point by trying to actively support the rehabilitation process with a bandage that can be worn in everyday life and is constructed as a smart textile using sensors and actuators. For this purpose, on the one hand it is attempted to actively record the phenomenon of the "giving way" by measuring knee angles etc. and by active user feedback. At the same time, the patient is specifically advised by means of actuators to correct incorrect posture or movement in order to make the rehabilitation process more effective and prevent further damage. Two 9-axis IMUs (inertial measurement units) form the basis of the system. These are used together with a textile strain sensor to calculate the knee angles. This paper gives an overview of the planned system, the initial experiments to measure the knee angles and the first results of the actuator study.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4156
Author(s):  
Luís B. P. Nascimento ◽  
Dennis Barrios-Aranibar ◽  
Vitor G. Santos ◽  
Diego S. Pereira ◽  
William C. Ribeiro ◽  
...  

The planning of safe paths is an important issue for autonomous robot systems. The Probabilistic Foam method (PFM) is a planner that guarantees safe paths bounded by a sequence of structures called bubbles that provides safe regions. This method performs the planning by covering the free configuration space with bubbles, an approach analogous to a breadth-first search. To improve the propagation process and keep the safety, we present three algorithms based on Probabilistic Foam: Goal-biased Probabilistic Foam (GBPF), Radius-biased Probabilistic Foam (RBPF), and Heuristic-guided Probabilistic Foam (HPF); the last two are proposed in this work. The variant GBPF is fast, HPF finds short paths, and RBPF finds high-clearance paths. Some simulations were performed using four different maps to analyze the behavior and performance of the methods. Besides, the safety was analyzed considering the new propagation strategies.


2010 ◽  
Vol 166-167 ◽  
pp. 161-166
Author(s):  
Ionut Dinulescu ◽  
Dorin Popescu ◽  
Mircea Nitulescu ◽  
Alice Predescu

Recent advances in the domains of social and life artificial intelligence have constituted the basis for a new discipline that studies cooperation in multi-robot systems and its utility in applications where some tasks cannot be carried out by a single robot. This paper introduces a trajectory generator which is used for determination of the most appropriate trajectory which a robot needs to track in order to perform different tasks specific to cooperative robots, such as moving in a given formation or pushing an object to a given destination. Different algorithms are described in this paper, starting from simple polyline and circular paths to complex Bezier trajectories. Simulation results of the proposed path generation system are also provided, along with the description of its implementation on real mobile robots. An implementation of real robots is also presented in this paper.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Nilamadhab Mishra ◽  
Hsien-Tsung Chang ◽  
Chung-Chih Lin

In an indoor safety-critical application, sensors and actuators are clustered together to accomplish critical actions within a limited time constraint. The cluster may be controlled by a dedicated programmed autonomous microcontroller device powered with electricity to perform in-network time critical functions, such as data collection, data processing, and knowledge production. In a data-centric sensor network, approximately 3–60% of the sensor data are faulty, and the data collected from the sensor environment are highly unstructured and ambiguous. Therefore, for safety-critical sensor applications, actuators must function intelligently within a hard time frame and have proper knowledge to perform their logical actions. This paper proposes a knowledge discovery strategy and an exploration algorithm for indoor safety-critical industrial applications. The application evidence and discussion validate that the proposed strategy and algorithm can be implemented for knowledge discovery within the operational framework.


Author(s):  
Marco Fiore ◽  
Nicola Di Modugno ◽  
Francesco Pellegrini ◽  
Mariagrazia Roselli

Uneven heating and hot spots, irregular matching conditions and deterioration of organoleptic qualities are typical drawbacks of magnetron-based food processing with microwave radiation. The proposed “Kopernicook” modular architecture, based on multiple solid-state generators governed by a distributed software platform, allows highly accurate parametric control, full customization of radiation patterns and dynamic self-regulating workflows. The first results, validated with industrial applications, show great flexibility of operation, optimal energy consumption and different ideas for future developments in terms of radiation patterns and feedback-triggered algorithms aimed at maximally efficient processes.


Sign in / Sign up

Export Citation Format

Share Document