scholarly journals Ecofriendly Long Life Nanocomposite Sensors for Determination of Carbachol in Presence of Choline: Application in Ophthalmic Solutions and Biological Fluids

Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2357 ◽  
Author(s):  
Eman A. Al-Harbi ◽  
Mona H. Abdelrahman ◽  
Amira M. El-Kosasy

Several emerging nano scale forms of carbon are showing great promise in electrochemical sensing such as graphene and multi-walled carbon nanotubes (MWCNTs). Herein we present an ecofriendly method to fabricate long life and sensitive ion selective sensors based on graphene and MWCNTs nanocomposites with no need for volatile organic solvents. Both sensors were fabricated, for the analysis of carbachol in ophthalmic solutions, plasma and urine where ion- association complex was formed between cationic carbachol and anionic Sodium tetra phenyl borate (NaTBP) in a ratio 1:1. Both sensors were evaluated according to the IUPAC recommendation data, revealing linear response in the concentration range 10−7 M to 10−2 M with near Nernstian slopes 50.80 ± 5 and 58.14 ± 3 mV/decade and correlation coefficients 0.9992 and 0.9998 for graphene and MWCNTs based sensors, respectively. Both sensors were successfully applied as stability indicating method for the analysis of carbachol in presence of its metabolite choline, in ophthalmic preparations, in plasma and urine showing good recovery percentage values. MWCNTs based sensor showed some advantages over graphene sensor regarding lower limit of detection (LOD), longer life time and higher selectivity towards carbachol. Statistical comparison of the proposed sensors with the official method showed no significant difference for accuracy and precision.

2012 ◽  
Vol 2012 ◽  
pp. 1-6
Author(s):  
S. N. Prashanth ◽  
Shankara S. Kalanur ◽  
Nagappa L. Teradal ◽  
J. Seetharamappa

The electrochemical behavior of isothipendyl hydrochloride (IPH) was investigated at bare and multiwalled-carbon-nanotube modified glassy carbon electrode (MWCNT-GCE). IPH (55 μM) showed two oxidation peaks in Britton-Robinson (BR) buffer of pH 7.0. The oxidation process of IPH was observed to be irreversible over the pH range of 2.5–9.0. The influence of pH, scan rate, and concentration of the drug on anodic peak was studied. A differential pulse voltammetric method with good precision and accuracy was developed for the determination of IPH in pure and biological fluids. The peak current was found to be linearly dependent on the concentration of IPH in the range of 1.25–55 μM. The values of limit of detection and limit of quantification were noticed to be 0.284 and 0.949 μM, respectively.


2020 ◽  
pp. 1-10
Author(s):  
C. Tonini ◽  
M.S. Oliveira ◽  
E.B. Parmeggiani ◽  
D.A.F. Sturza ◽  
A.O. Mallmann ◽  
...  

The inclusion of anti-mycotoxin additives (AMA) in the diet of production animals has been widely used to avoid mycotoxin exposure. In order to confirm the efficacy of such products in vivo, measurement of mycotoxins and/or their metabolites in biological fluids is preconized. This study aimed at determining the serological biomarkers of zearalenone (ZEN), α-zearalenol, β-zearalenol, α-zearalanol, β-zearalanol (β-ZAL) and zearalanone, to evaluate the efficacy of an AMA in beef heifers. The trial lasted 37 days: 11 days of adaptation, 21 days of actual experiment, and 5 days of regression. Twenty-four heifers were randomly assigned to receive one of the following treatments (n=6/group): (T1) basal diet (control); (T2) basal diet + 5 mg/kg of ZEN; (T3) basal diet + 5 mg/kg of ZEN + 2.5 kg/t of AMA; and (T4) basal diet + 5 mg/kg of ZEN + 5.0 kg/t of AMA. Blood sampling was performed on different days after the diet was given. The samples were centrifuged to obtain the blood serum, and then analysed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). β-ZAL was detected above the limit of quantification both in the unconjugated (>0.60 ng/ml) and conjugated (>0.90 ng/ml) forms. The remaining metabolites presented concentrations under the limit of detection. In the efficacy evaluation of the AMA, there was no significant difference (P>0.05) between the treatments with and without additive at the tested levels of inclusion. Thus, β-ZAL may be employed as a biomarker of ZEN exposure via diet to evaluate the efficacy of an AMA through serological parameters. The technique applied in this study proved to be an adequate alternative for in vivo confirmation of the efficacy of products in adsorbing the toxin.


Chemosensors ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 33
Author(s):  
Anastasia Goida ◽  
Yurii Kuzin ◽  
Vladimir Evtugyn ◽  
Anna Porfireva ◽  
Gennady Evtugyn ◽  
...  

A highly sensitive electrochemical DNA sensor for detection of the chemotherapeutic drug idarubicin mediated by Methylene blue (MB) has been developed. DNA from fish sperm has been immobilized at the electropolymerized layers of Azure B. The incorporation of MB into the DNA layers substantially increased the sensor sensitivity. The concentration range for idarubicin determination by cyclic voltammetry was from 1 fM to 0.1 nM, with a limit of detection (LOD) of 0.3 fM. Electrochemical impedance spectroscopy (EIS) in the presence of a redox probe ([Fe(CN)6]3−/4−) allowed for the widening of a linear range of idarubicin detection from 1 fM to 100 nM, retaining LOD 0.3 fM. The DNA sensor has been tested in various real and artificial biological fluids with good recovery ranging between 90–110%. The sensor has been successfully used for impedimetric idarubicin detection in medical preparation Zavedos®. The developed DNA biosensor could be useful for the control of the level of idarubicin during cancer therapy as well as for pharmacokinetics studies.


2011 ◽  
Vol 17 (3) ◽  
pp. 259-267 ◽  
Author(s):  
Nagaraju Rajendraprasad ◽  
Kanakapura Basavaiahf ◽  
Basavaiah Vinay

Quetiapine fumarate (QTF) is an antipsychotic drug belonging to the benzisoxazole derivatives indicated for the treatment of schizophrenia. A sensitive and selective method based on dichloromethane-extractable ion-pair of QTF with calmagite (CGT), which exhibited an absorption maximum at 490 nm, is described. At this wavelength, Beer?s law is obeyed over the concentration range of 3.0 - 30.0 ?g ml-1. The apparent molar absorptivity, limit of detection (LOD) and quantitation (LOQ) values are 1.32 ? 104 l mol-1 cm-1, 0.27 and 0.81 ?g ml-1 respectively. The reaction is extremely rapid at room temperature and the absorbance values remain unchanged upto 19 h. The precision results, expressed as intra-day and inter-day relative standard deviation values, are satisfactory (RSD ? 2.2%). The accuracy is satisfactory as well (RE ? 2.44%). The method was successfully applied to the determination of QTF in pharmaceuticals and spiked human urine with satisfactory results. No interference was observed from common pharmaceutical adjuvants in tablets. Statistical comparison of the results with official method showed an excellent agreement and indicated no significant difference in precision.


2012 ◽  
Vol 27 ◽  
pp. 129-141 ◽  
Author(s):  
Akram El-Didamony ◽  
Sameh Hafeez

Two simple, sensitive and selective spectrophotometric methods have been described for the determination of the psychoactive drug, thioridazine HCl in tablets and in biological fluids. The first method is based on the oxidation of thioridazine HCl with measured excess of KMnO4under acidic conditions followed by the determination of unreacted oxidant using indigo carmine and methyl orange. The second method is based on the formation of ion-pair complexes with the acidic sulphophthalein dyes such as bromocresol green and bromocresol purple at pH 1.8 of KCl-HCl buffer. The formed complexes were extracted into methylene chloride and their absorbance was measured at 412 nm. Optimizations of the different experimental conditions are described for both methods. The proposed methods were successfully applied for determination of the drug in tablets and biological fluids with good accuracy and precision. Statistical comparison of the results with those obtained by an official method showed good agreement and indicated no significant difference in accuracy and precision.


Crisis ◽  
2005 ◽  
Vol 26 (1) ◽  
pp. 4-11 ◽  
Author(s):  
E. Kinyanda ◽  
H. Hjelmeland ◽  
S. Musisi

Abstract. Negative life events associated with deliberate self-harm (DSH) were investigated in an African context in Uganda. Patients admitted at three general hospitals in Kampala, Uganda were interviewed using a Luganda version (predominant language in the study area) of the European Parasuicide Study Interview Schedule I. The results of the life events and histories module are reported in this paper. The categories of negative life events in childhood that were significantly associated with DSH included those related to parents, significant others, personal events, and the total negative life events load in childhood. For the later-life time period, the negative life events load in the partner category and the total negative life events in this time period were associated with DSH. In the last-year time period, the negative life events load related to personal events and the total number of negative life events in this time period were associated with DSH. A statistically significant difference between the cases and controls for the total number of negative life events reported over the entire lifetime of the respondents was also observed, which suggests a dose effect of negative life events on DSH. Gender differences were also observed among the cases. In conclusion, life events appear to be an important factor in DSH in this cultural environment. The implication of these results for treatment and the future development of suicide interventions in this country are discussed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pattan-Siddappa Ganesh ◽  
Ganesh Shimoga ◽  
Seok-Han Lee ◽  
Sang-Youn Kim ◽  
Eno E. Ebenso

Abstract Background A simple and simultaneous electrochemical sensing platform was fabricated by electropolymerization of allura red on glassy carbon electrode (GCE) for the interference-free detection of dihydroxy benzene isomers. Methods The modified working electrode was characterized by electrochemical and field emission scanning electron microscopy methods. The modified electrode showed excellent electrocatalytic activity for the electrooxidation of catechol (CC) and hydroquinone (HQ) at physiological pH of 7.4 by cyclic voltammetric (CV) and differential pulse voltammetric (DPV) techniques. Results The effective split in the overlapped oxidation signal of CC and HQ was achieved in a binary mixture with peak to peak separation of 0.102 V and 0.103 V by CV and DPV techniques. The electrode kinetics was found to be adsorption-controlled. The oxidation potential directly depends on the pH of the buffer solution, and it witnessed the transfer of equal number of protons and electrons in the redox phenomenon. Conclusions The limit of detection (LOD) for CC and HQ was calculated to be 0.126 μM and 0.132 μM in the linear range of 0 to 80.0 μM and 0 to 110.0 μM, respectively, by ultra-sensitive DPV technique. The practical applicability of the proposed sensor was evaluated for tap water sample analysis, and good recovery rates were observed. Graphical abstract Electrocatalytic interaction of ALR/GCE with dihydroxy benzene isomers.


Chemosensors ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 35
Author(s):  
Ahmed H. Naggar ◽  
Ahmed Kotb ◽  
Ahmed A. Gahlan ◽  
Mahmoud H. Mahross ◽  
Abd El-Aziz Y. El-Sayed ◽  
...  

Herein, a feasible chemical reduction method followed by intensive mixing was applied for the preparation of an attractive material based on graphite studded with cuprous oxide nanoparticle-based cubes (Cu2ONPs–C@G). Transmission electron microscope (TEM), scanning electron microscope (SEM), X-ray diffraction (XRD) and cyclic voltammetry (CV) were utilized for characterization. Cuprous oxide nanoparticles (Cu2ONPs), with a diameter range mainly distributed from 4 to 20 nm, aggregate to form microcubes (Cu2ONPs–C) with an average diameter of about 367 nm. Paste electrode was prepared using Cu2ONPs–C@G (Cu2ONPs–C@G/PE) for voltametric quantification of the musculotropic antispasmodic drug: mebeverine hydrochloride (MEB). The electrochemical behavior of MEB was studied using CV, and the optimum analytical parameters were investigated using square wave adsorptive anodic stripping voltammetry (SWAdASV). Moreover, density functional theory (DFT) was used to emphasize the ability of MEB to form a complex with Cu2+, confirming the suggested electrochemical behavior of MEB at Cu2ONPs–C@G/PE. With good stability and high reproducibility, SWAdASV of Cu2ONPs–C@G/PE shows successful quantification of MEB over the concentration range of 5.00 × 10−11–1.10 × 10−9 M with lower limit of detection (LOD) and lower limit of quantification (LOQ) values of 2.41 × 10−11 M and 8.05 × 10−11 M, respectively. Finally, accurate quantification of MEB in dosage forms (tablets) and biological fluids (spiked human urine and plasma samples) was achieved using Cu2ONPs-C@G/PE.


Biosensors ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 164
Author(s):  
Haoyu Liu ◽  
Wei Liu ◽  
Gang Jin

Exosomes are a kind of membrane-bound phospholipid nanovesicle that are secreted extensively in a variety of biological fluids. Accumulating evidence has indicated that exosomes not only communicate with cells, but also perform functional roles in physiology and pathology. In addition, exosomes have also elicited a great deal of excitement due to their potential as disease biomarkers. Therefore, requirements for sensitive methods capable of precisely and specifically determining exosomes were needed. Herein, we not only develop a sensing surface to capture exosomes but also compare two surface proteins on exosomes, which are appropriate for detecting exosome surface markers by total internal reflected imaging ellipsometry (TIRIE). Protein G and antibody were immobilized on a thin layer of golden substrate to form the biosensing surface. The bio-interaction between antibodies and exosomes was recorded by the TIRIE in real time. The distance between exosomes adhered on a surface was 44 nm ± 0.5 nm. The KD  of anti-CD9 and exosome was lower than anti-CD63 and exosome by introducing pseudo-first-order interaction kinetics, which suggested that CD9 is more suitable for exosome surface markers than CD63. The limit of detection (LOD) of TIRIE was 0.4 μg/mL. In conclusion, we have proposed a surface for the detection of exosomes based on TIRIE, which can make the detection of exosomes convenient and efficient.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
K. Chetankumar ◽  
B. E. Kumara Swamy ◽  
S. C. Sharma ◽  
S. A. Hariprasad

AbstractIn this proposed work, direct green 6 (DG6) decorated carbon paste electrode (CPE) was fabricated for the efficient simultaneous and individual sensing of catechol (CA) and hydroquinone (HY). Electrochemical deeds of the CA and HY were carried out by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) at poly-DG6-modfied carbon paste electrode (Po-DG6-MCPE). Using scanning electron microscopy (SEM) studied the surface property of unmodified CPE (UCPE) and Po-DG6-MCPE. The decorated sensor displayed admirable electrocatalytic performance with fine stability, reproducibility, selectivity, low limit of detection (LLOD) for HY (0.11 μM) and CC (0.09 μM) and sensor process was originated to be adsorption-controlled phenomena. The Po-DG6-MCPE sensor exhibits well separated two peaks for HY and CA in CV and DPV analysis with potential difference of 0.098 V. Subsequently, the sensor was practically applied for the analysis in tap water and it consistent in-between for CA 93.25–100.16% and for HY 97.25–99.87% respectively.


Sign in / Sign up

Export Citation Format

Share Document