scholarly journals A Novel Approach for Multi-Lead ECG Classification Using DL-CCANet and TL-CCANet

Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3214 ◽  
Author(s):  
Weiyi Yang ◽  
Yujuan Si ◽  
Di Wang ◽  
Gong Zhang

Cardiovascular disease (CVD) has become one of the most serious diseases that threaten human health. Over the past decades, over 150 million humans have died of CVDs. Hence, timely prediction of CVDs is especially important. Currently, deep learning algorithm-based CVD diagnosis methods are extensively employed, however, most such algorithms can only utilize one-lead ECGs. Hence, the potential information in other-lead ECGs was not utilized. To address this issue, we have developed novel methods for diagnosing arrhythmia. In this work, DL-CCANet and TL-CCANet are proposed to extract abstract discriminating features from dual-lead and three-lead ECGs, respectively. Then, the linear support vector machine specializing in high-dimensional features is used as the classifier model. On the MIT-BIH database, a 95.2% overall accuracy is obtained by detecting 15 types of heartbeats using DL-CCANet. On the INCART database, overall accuracies of 94.01% (II and V1 leads), 93.90% (V1 and V5 leads) and 94.07% (II and V5 leads) are achieved by detecting seven types of heartbeat using DL-CCANet, while TL-CCANet yields a higher overall accuracy of 95.52% using the above three leads. In addition, all of the above experiments are implemented using noisy ECG data. The proposed methods have potential to be applied in the clinic and mobile devices.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Tianqi Tu ◽  
Xueling Wei ◽  
Yue Yang ◽  
Nianrong Zhang ◽  
Wei Li ◽  
...  

Abstract Background Common subtypes seen in Chinese patients with membranous nephropathy (MN) include idiopathic membranous nephropathy (IMN) and hepatitis B virus-related membranous nephropathy (HBV-MN). However, the morphologic differences are not visible under the light microscope in certain renal biopsy tissues. Methods We propose here a deep learning-based framework for processing hyperspectral images of renal biopsy tissue to define the difference between IMN and HBV-MN based on the component of their immune complex deposition. Results The proposed framework can achieve an overall accuracy of 95.04% in classification, which also leads to better performance than support vector machine (SVM)-based algorithms. Conclusion IMN and HBV-MN can be correctly separated via the deep learning framework using hyperspectral imagery. Our results suggest the potential of the deep learning algorithm as a new method to aid in the diagnosis of MN.


2021 ◽  
Author(s):  
Praveeen Anandhanathan ◽  
Priyanka Gopalan

Abstract Coronavirus disease (COVID-19) is spreading across the world. Since at first it has appeared in Wuhan, China in December 2019, it has become a serious issue across the globe. There are no accurate resources to predict and find the disease. So, by knowing the past patients’ records, it could guide the clinicians to fight against the pandemic. Therefore, for the prediction of healthiness from symptoms Machine learning techniques can be implemented. From this we are going to analyse only the symptoms which occurs in every patient. These predictions can help clinicians in the easier manner to cure the patients. Already for prediction of many of the diseases, techniques like SVM (Support vector Machine), Fuzzy k-Means Clustering, Decision Tree algorithm, Random Forest Method, ANN (Artificial Neural Network), KNN (k-Nearest Neighbour), Naïve Bayes, Linear Regression model are used. As we haven’t faced this disease before, we can’t say which technique will give the maximum accuracy. So, we are going to provide an efficient result by comparing all the such algorithms in RStudio.


2017 ◽  
Vol 10 (2) ◽  
pp. 520-528 ◽  
Author(s):  
Mudasir Kirmani

Cardiovascular disease represents various diseases associated with heart, lymphatic system and circulatory system of human body. World Health Organisation (WHO) has reported that cardiovascular diseases have high mortality rate and high risk to cause various disabilities. Most prevalent causes for cardiovascular diseases are behavioural and food habits like tobacco intake, unhealthy diet and obesity, physical inactivity, ageing and addiction to drugs and alcohol are to name few. Factors such as hypertension, diabetes, hyperlipidemia, Stress and other ailments are at high risk to cardiovascular diseases. There have been different techniques to predict the prevalence of cardiovascular diseases in general and heart disease in particular from time to time by implementing variety of algorithms. Detection and management of cardiovascular diseases can be achieved by using computer based predictive tool in data mining. By implementing data mining based techniques there is scope for better and reliable prediction and diagnosis of heart diseases. In this study we studied various available techniques like decision Tree and its variants, Naive Bayes, Neural Networks, Support Vector Machine, Fuzzy Rules, Genetic Algorithms, and Ant Colony Optimization to name few. The observations illustrated that it is difficult to name a single machine learning algorithm for the diagnosis and prognosis of CVD. The study further contemplates on the behaviour, selection and number of factors required for efficient prediction.


2021 ◽  
Author(s):  
jorge cabrera Alvargonzalez ◽  
Ana Larranaga Janeiro ◽  
Sonia Perez ◽  
Javier Martinez Torres ◽  
Lucia martinez lamas ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been and remains one of the major challenges humanity has faced thus far. Over the past few months, large amounts of information have been collected that are only now beginning to be assimilated. In the present work, the existence of residual information in the massive numbers of rRT-PCRs that tested positive out of the almost half a million tests that were performed during the pandemic is investigated. This residual information is believed to be highly related to a pattern in the number of cycles that are necessary to detect positive samples as such. Thus, a database of more than 20,000 positive samples was collected, and two supervised classification algorithms (a support vector machine and a neural network) were trained to temporally locate each sample based solely and exclusively on the number of cycles determined in the rRT-PCR of each individual. Finally, the results obtained from the classification show how the appearance of each wave is coincident with the surge of each of the variants present in the region of Galicia (Spain) during the development of the SARS-CoV-2 pandemic and clearly identified with the classification algorithm.


GEOMATICA ◽  
2021 ◽  
pp. 1-23
Author(s):  
Roholah Yazdan ◽  
Masood Varshosaz ◽  
Saied Pirasteh ◽  
Fabio Remondino

Automatic detection and recognition of traffic signs from images is an important topic in many applications. At first, we segmented the images using a classification algorithm to delineate the areas where the signs are more likely to be found. In this regard, shadows, objects having similar colours, and extreme illumination changes can significantly affect the segmentation results. We propose a new shape-based algorithm to improve the accuracy of the segmentation. The algorithm works by incorporating the sign geometry to filter out the wrong pixels from the classification results. We performed several tests to compare the performance of our algorithm against those obtained by popular techniques such as Support Vector Machine (SVM), K-Means, and K-Nearest Neighbours. In these tests, to overcome the unwanted illumination effects, the images are transformed into colour spaces Hue, Saturation, and Intensity, YUV, normalized red green blue, and Gaussian. Among the traditional techniques used in this study, the best results were obtained with SVM applied to the images transformed into the Gaussian colour space. The comparison results also suggested that by adding the geometric constraints proposed in this study, the quality of sign image segmentation is improved by 10%–25%. We also comparted the SVM classifier enhanced by incorporating the geometry of signs with a U-Shaped deep learning algorithm. Results suggested the performance of both techniques is very close. Perhaps the deep learning results could be improved if a more comprehensive data set is provided.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xueying Li ◽  
Pingping Fan ◽  
Zongmin Li ◽  
Guangyuan Chen ◽  
Huimin Qiu ◽  
...  

Changes in land cover will cause the changes in the climate and environmental characteristics, which has an important influence on the social economy and ecosystem. The main form of land cover is different types of soil. Compared with traditional methods, visible and near-infrared spectroscopy technology can classify different types of soil rapidly, effectively, and nondestructively. Based on the visible near-infrared spectroscopy technology, this paper takes the soil of six different land cover types in Qingdao, China orchards, woodlands, tea plantations, farmlands, bare lands, and grasslands as examples and establishes a convolutional neural network classification model. The classification results of different number of training samples are analyzed and compared with the support vector machine algorithm. Under the condition that Kennard–Stone algorithm divides the calibration set, the classification results of six different soil types and single six soil types by convolutional neural network are better than those by the support vector machine. Under the condition of randomly dividing the calibration set according to the proportion of 1/3 and 1/4, the classification results by convolutional neural network are also better. The aim of this study is to analyze the feasibility of land cover classification with small samples by convolutional neural network and, according to the deep learning algorithm, to explore new methods for rapid, nondestructive, and accurate classification of the land cover.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Huiying Zhang ◽  
Jinjin Guo ◽  
Guie Sun

High-dimensional deep learning has been applied in all walks of life at present, among which the most representative one is the logistics path optimization combining multimedia with high-dimensional deep learning. Using multimedia logistics to explore and operate the best path can make the whole logistics industry get innovation and leap forward. How to use high-dimensional deep learning to conduct visual logistics operation management is an opportunity and a problem facing the whole logistics industry at present. The application of high-dimensional deep learning technology can help logistics enterprises improve their management level, realize intelligent decision-making, and enable accurate prediction. Starting from the total amount of logistics, regional layout, enterprise scale, and high-dimensional deep learning algorithm, this paper analyzes the current situation of China’s logistic development through multiweight analysis and explores the best path for multimedia logistics.


2021 ◽  
Vol 11 (24) ◽  
pp. 11965
Author(s):  
Rafaelle Piazzaroli Finotti ◽  
Flávio de Souza Barbosa ◽  
Alexandre Abrahão Cury ◽  
Roberto Leal Pimentel

The present work evaluates the deep learning algorithm called Sparse Auto-Encoder (SAE) when applied to the characterization of structural anomalies. This study explores the SAE’s performance in a supervised damage detection approach to consolidate its application in the Structural Health Monitoring (SHM) field, especially when dealing with real-case structures. The main idea is to use the SAE to extract relevant features from the monitored signals and the well-known Support Vector Machine (SVM) to classify such characteristics within the context of an SHM problem. Vibration data from a numerical beam model and a highway viaduct in Brazil are considered to assess the proposed approach. In both analyzed examples, the efficiency of the implemented methodology achieved more than 99% of correct damage structural classifications, supporting the conclusion that SAE can extract relevant characteristics from dynamic signals that are useful for SHM applications.


2021 ◽  
Author(s):  
Tianqi Tu ◽  
Xueling Wei ◽  
Yue Yang ◽  
Nianrong Zhang ◽  
Wei Li ◽  
...  

Abstract Background: Common subtypes seen in Chinese patients with membranous nephropathy (MN) include idiopathic membranous nephropathy (IMN) and hepatitis B virus-related membranous nephropathy (HBV-MN). However, the morphologic differences are not visible under the light microscope in certain renal biopsy tissues. Methods: We propose here a deep learning-based framework for processing hyperspectral images of renal biopsy tissue to define the difference between IMN and HBV-MN based on the component of their immune complex deposition. Results: The proposed framework can achieve an overall accuracy of 95.04% in classification, which also leads to better performance than support vector machine (SVM)-based algorithms. Conclusion: IMN and HBV-MN can be correctly separated via the deep learning framework using hyperspectral imagery. Our results suggest the potential of the deep learning algorithm as a new method to aid in the diagnosis of MN.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2840 ◽  
Author(s):  
Lawrence Muriira ◽  
Zhiwei Zhao ◽  
Geyong Min

Linear Support Vector Machine (LSVM) has proven to be an effective approach for link classification in sensor networks. In this paper, we present a data-driven framework for reliable link classification that models Kernelized Linear Support Vector Machine (KLSVM) to produce stable and consistent results. KLSVM is a linear classifying technique that learns the “best” parameter settings. We investigated its application to model and capture two phenomena: High dimensional multi-category classification and Spatiotemporal data correlation in wireless sensor network (WSN). In addition, the technique also detects anomalies within the network. With the optimized selection of the linear kernel hyperparameters, the technique models high-dimensional data classification and the examined packet traces exhibit correlations between link features. Link features with Packet Reception Rate (PRR) greater than 50% show a high degree of negative correlation while the other sensor node observations show a moderate degree of positive correlation. The model gives a good visual intuition of the network behavior. The efficiency of the supervised learning technique is studied over real dataset obtained from a WSN testbed. To achieve that, we examined packet traces from the 802.15.4 network. The technique has a good performance on link quality estimation accuracy and a precise anomaly detection of sensor nodes within the network.


Sign in / Sign up

Export Citation Format

Share Document