scholarly journals Time-Series Laplacian Semi-Supervised Learning for Indoor Localization †

Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3867 ◽  
Author(s):  
Jaehyun Yoo

Machine learning-based indoor localization used to suffer from the collection, construction, and maintenance of labeled training databases for practical implementation. Semi-supervised learning methods have been developed as efficient indoor localization methods to reduce use of labeled training data. To boost the efficiency and the accuracy of indoor localization, this paper proposes a new time-series semi-supervised learning algorithm. The key aspect of the developed method, which distinguishes it from conventional semi-supervised algorithms, is the use of unlabeled data. The learning algorithm finds spatio-temporal relationships in the unlabeled data, and pseudolabels are generated to compensate for the lack of labeled training data. In the next step, another balancing-optimization learning algorithm learns a positioning model. The proposed method is evaluated for estimating the location of a smartphone user by using a Wi-Fi received signal strength indicator (RSSI) measurement. The experimental results show that the developed learning algorithm outperforms some existing semi-supervised algorithms according to the variation of the number of training data and access points. Also, the proposed method is discussed in terms of why it gives better performance, by the analysis of the impact of the learning parameters. Moreover, the extended localization scheme in conjunction with a particle filter is executed to include additional information, such as a floor plan.

2007 ◽  
Vol 19 (1) ◽  
pp. 80-110 ◽  
Author(s):  
Colin Molter ◽  
Utku Salihoglu ◽  
Hugues Bersini

This letter aims at studying the impact of iterative Hebbian learning algorithms on the recurrent neural network's underlying dynamics. First, an iterative supervised learning algorithm is discussed. An essential improvement of this algorithm consists of indexing the attractor information items by means of external stimuli rather than by using only initial conditions, as Hopfield originally proposed. Modifying the stimuli mainly results in a change of the entire internal dynamics, leading to an enlargement of the set of attractors and potential memory bags. The impact of the learning on the network's dynamics is the following: the more information to be stored as limit cycle attractors of the neural network, the more chaos prevails as the background dynamical regime of the network. In fact, the background chaos spreads widely and adopts a very unstructured shape similar to white noise. Next, we introduce a new form of supervised learning that is more plausible from a biological point of view: the network has to learn to react to an external stimulus by cycling through a sequence that is no longer specified a priori. Based on its spontaneous dynamics, the network decides “on its own” the dynamical patterns to be associated with the stimuli. Compared with classical supervised learning, huge enhancements in storing capacity and computational cost have been observed. Moreover, this new form of supervised learning, by being more “respectful” of the network intrinsic dynamics, maintains much more structure in the obtained chaos. It is still possible to observe the traces of the learned attractors in the chaotic regime. This complex but still very informative regime is referred to as “frustrated chaos.”


Author(s):  
Tobias Scheffer

For many classification problems, unlabeled training data are inexpensive and readily available, whereas labeling training data imposes costs. Semi-supervised classification algorithms aim at utilizing information contained in unlabeled data in addition to the (few) labeled data.


Author(s):  
Ashwini Rahangdale ◽  
Shital Raut

Learning-to-rank (LTR) is a very hot topic of research for information retrieval (IR). LTR framework usually learns the ranking function using available training data that are very cost-effective, time-consuming and biased. When sufficient amount of training data is not available, semi-supervised learning is one of the machine learning paradigms that can be applied to get pseudo label from unlabeled data. Cluster and label is a basic approach for semi-supervised learning to identify the high-density region in data space which is mainly used to support the supervised learning. However, clustering with conventional method may lead to prediction performance which is worse than supervised learning algorithms for application of LTR. Thus, we propose rank preserving clustering (RPC) with PLocalSearch and get pseudo label for unlabeled data. We present semi-supervised learning that adopts clustering-based transductive method and combine it with nonmeasure specific listwise approach to learn the LTR model. Moreover, each cluster follows the multi-task learning to avoid optimization of multiple loss functions. It reduces the training complexity of adopted listwise approach from an exponential order to a polynomial order. Empirical analysis on the standard datasets (LETOR) shows that the proposed model gives better results as compared to other state-of-the-arts.


Author(s):  
Jan Backhaus ◽  
Marcel Aulich ◽  
Christian Frey ◽  
Timea Lengyel ◽  
Christian Voß

This paper studies the use of adjoint CFD solvers in combination with surrogate modelling in order to reduce the computational cost of the optimization of complex 3D turbomachinery components. The method is applied to a previously optimized counter rotating turbofan, with a shape parameterized by 104 CAD parameters. Through random changes on the reference design, a small number of design variations are created to serve as training samples for the surrogate models. A steady RANS solver and its discrete adjoint are then used to calculate objective function values and their corresponding sensitivities. Kriging and neural networks are used to build surrogate models from the training data. To study the impact of the additional information provided by the adjoint solver, each model is trained with and without the sensitivity information. The accuracy of the different surrogate model predictions is assessed by comparison against CFD calculations. The results show a considerable improvement of the fitness function approximation when the sensitivity information is taken into account. Through a gradient based optimization on one of the surrogate models, a design with higher isentropic efficiency at the aerodynamic design point is created. This application demonstrates that the improved surrogate models can be used for design and optimization.


Author(s):  
SHI ZHONG

Using unlabeled data to help supervised learning has become an increasingly attractive methodology and proven to be effective in many applications. This paper applies semi-supervised classification algorithms, based on hidden Markov models, to classify sequences. For model-based classification, semi-supervised learning amounts to using both labeled and unlabeled data to train model parameters. We examine three different strategies of using labeled and unlabeled data in the model training process. These strategies differ in how and when labeled and unlabeled data contribute to the model training process. We also compare regular semi-supervised learning, where there are separate unlabeled training data and unlabeled test data, with transductive learning where we do not differentiate between unlabeled training data and unlabeled test data. Our experimental results on synthetic and real EEG time-series show that substantially improved classification accuracy can be achieved by these semi-supervised learning strategies. The effect of model complexity on semi-supervised learning is also studied in our experiments.


2021 ◽  
Vol 13 (21) ◽  
pp. 4255
Author(s):  
Alina Ciocarlan ◽  
Andrei Stoian

Automatic ship detection provides an essential function towards maritime domain awareness for security or economic monitoring purposes. This work presents an approach for training a deep learning ship detector in Sentinel-2 multi-spectral images with few labeled examples. We design a network architecture for detecting ships with a backbone that can be pre-trained separately. By using self supervised learning, an emerging unsupervised training procedure, we learn good features on Sentinel-2 images, without requiring labeling, to initialize our network’s backbone. The full network is then fine-tuned to learn to detect ships in challenging settings. We evaluated this approach versus pre-training on ImageNet and versus a classical image processing pipeline. We examined the impact of variations in the self-supervised learning step and we show that in the few-shot learning setting self-supervised pre-training achieves better results than ImageNet pre-training. When enough training data are available, our self-supervised approach is as good as ImageNet pre-training. We conclude that a better design of the self-supervised task and bigger non-annotated dataset sizes can lead to surpassing ImageNet pre-training performance without any annotation costs.


2021 ◽  
Author(s):  
Roberto Augusto Philippi Martins ◽  
Danilo Silva

The lack of labeled data is one of the main prohibiting issues on the development of deep learning models, as they rely on large labeled datasets in order to achieve high accuracy in complex tasks. Our objective is to evaluate the performance gain of having additional unlabeled data in the training of a deep learning model when working with medical imaging data. We present a semi-supervised learning algorithm that utilizes a teacher-student paradigm in order to leverage unlabeled data in the classification of chest X-ray images. Using our algorithm on the ChestX-ray14 dataset, we manage to achieve a substantial increase in performance when using small labeled datasets. With our method, a model achieves an AUROC of 0.822 with only 2% labeled data and 0.865 with 5% labeled data, while a fully supervised method achieves an AUROC of 0.807 with 5% labeled data and only 0.845 with 10%.


2020 ◽  
Vol 115 (3) ◽  
pp. 1839-1867
Author(s):  
Piotr Nawrocki ◽  
Bartlomiej Sniezynski

AbstractIn this paper we present an original adaptive task scheduling system, which optimizes the energy consumption of mobile devices using machine learning mechanisms and context information. The system learns how to allocate resources appropriately: how to schedule services/tasks optimally between the device and the cloud, which is especially important in mobile systems. Decisions are made taking the context into account (e.g. network connection type, location, potential time and cost of executing the application or service). In this study, a supervised learning agent architecture and service selection algorithm are proposed to solve this problem. Adaptation is performed online, on a mobile device. Information about the context, task description, the decision made and its results such as power consumption are stored and constitute training data for a supervised learning algorithm, which updates the knowledge used to determine the optimal location for the execution of a given type of task. To verify the solution proposed, appropriate software has been developed and a series of experiments have been conducted. Results show that as a result of the experience gathered and the learning process performed, the decision module has become more efficient in assigning the task to either the mobile device or cloud resources.


2021 ◽  
Vol 67 (1 Jan-Feb) ◽  
pp. 146
Author(s):  
J. A. Lopez-Leyva ◽  
A. Arvizu-Mondragon ◽  
J. Santos-Aguilar ◽  
F. J. Mendieta-Jimenez

In this article, the statistical evaluation of the performance of FSO links subject to dynamic fluctuations of atmospheric optical turbulence that affect the instantaneous value of the received optical power is presented. We reproduce this temporal domain effect with time series generated by simulation considering the optical turbulence as a stochastic process with Gamma-Gamma probability distribution. Also, a phase screen was used in order to observe the impact that optical turbulence has over the optical information field's spatial phase. With our simulations, it is possible to get the two most essential performance parameters required for the practical implementation of FSO links. We obtained the mean signal-to-noise ratio (SNR) and the mean bit error rate (BER) of FSO links affected by optical turbulence with Gamma-Gamma distribution.  The methodology presented in this paper may be readily used to design and implement real-world FSO links.


Sign in / Sign up

Export Citation Format

Share Document