scholarly journals A Deep-Learning-Driven Light-Weight Phishing Detection Sensor

Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4258 ◽  
Author(s):  
Bo Wei ◽  
Rebeen Ali Hamad ◽  
Longzhi Yang ◽  
Xuan He ◽  
Hao Wang ◽  
...  

This paper designs an accurate and low-cost phishing detection sensor by exploring deep learning techniques. Phishing is a very common social engineering technique. The attackers try to deceive online users by mimicking a uniform resource locator (URL) and a webpage. Traditionally, phishing detection is largely based on manual reports from users. Machine learning techniques have recently been introduced for phishing detection. With the recent rapid development of deep learning techniques, many deep-learning-based recognition methods have also been explored to improve classification performance. This paper proposes a light-weight deep learning algorithm to detect the malicious URLs and enable a real-time and energy-saving phishing detection sensor. Experimental tests and comparisons have been conducted to verify the efficacy of the proposed method. According to the experiments, the true detection rate has been improved. This paper has also verified that the proposed method can run in an energy-saving embedded single board computer in real-time.

Author(s):  
Kanushka Gajjar ◽  
Theo van Niekerk ◽  
Thomas Wilm ◽  
Paolo Mercorelli

Potholes on roads pose a major threat to motorists and autonomous vehicles. Driving over a pothole has the potential to cause serious damage to a vehicle, which in turn may result in fatal accidents. Currently, many pothole detection methods exist. However, these methods do not utilize deep learning techniques to detect a pothole in real-time, determine the location thereof and display its location on a map. The success of determining an effective pothole detection method, which includes the aforementioned deep learning techniques, is dependent on acquiring a large amount of data, including images of potholes. Once adequate data had been gathered, the images were processed and annotated. The next step was to determine which deep learning algorithms could be utilized. Three different models, including Faster R-CNN, SSD and YOLOv3 were trained on the custom dataset containing images of potholes to determine which network produces the best results for real-time detection. It was revealed that YOLOv3 produced the most accurate results and performed the best in real-time, with an average detection time of only 0.836s per image. The final results revealed that a real-time pothole detection system, integrated with a cloud and maps service, can be created to allow drivers to avoid potholes.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Sumaya Sanober ◽  
Izhar Alam ◽  
Sagar Pande ◽  
Farrukh Arslan ◽  
Kantilal Pitambar Rane ◽  
...  

In today’s era of technology, especially in the Internet commerce and banking, the transactions done by the Mastercards have been increasing rapidly. The card becomes the highly useable equipment for Internet shopping. Such demanding and inflation rate causes a considerable damage and enhancement in fraud cases also. It is very much necessary to stop the fraud transactions because it impacts on financial conditions over time the anomaly detection is having some important application to detect the fraud detection. A novel framework which integrates Spark with a deep learning approach is proposed in this work. This work also implements different machine learning techniques for detection of fraudulent like random forest, SVM, logistic regression, decision tree, and KNN. Comparative analysis is done by using various parameters. More than 96% accuracy was obtained for both training and testing datasets. The existing system like Cardwatch, web service-based fraud detection, needs labelled data for both genuine and fraudulent transactions. New frauds cannot be found in these existing techniques. The dataset which is used contains transaction made by credit cards in September 2013 by cardholders of Europe. The dataset contains the transactions occurred in 2 days, in which there are 492 fraud transactions out of 284,807 which is 0.172% of all transaction.


Author(s):  
Anisha M. Lal ◽  
B. Koushik Reddy ◽  
Aju D.

Machine learning can be defined as the ability of a computer to learn and solve a problem without being explicitly coded. The efficiency of the program increases with experience through the task specified. In traditional programming, the program and the input are specified to get the output, but in the case of machine learning, the targets and predictors are provided to the algorithm make the process trained. This chapter focuses on various machine learning techniques and their performance with commonly used datasets. A supervised learning algorithm consists of a target variable that is to be predicted from a given set of predictors. Using these established targets is a function that plots targets to a given set of predictors. The training process allows the system to train the unknown data and continues until the model achieves a desired level of accuracy on the training data. The supervised methods can be usually categorized as classification and regression. This chapter discourses some of the popular supervised machine learning algorithms and their performances using quotidian datasets. This chapter also discusses some of the non-linear regression techniques and some insights on deep learning with respect to object recognition.


2021 ◽  
Vol 11 (3) ◽  
pp. 202-207
Author(s):  
Kittipat Sriwong ◽  
◽  
Kittisak Kerdprasop ◽  
Nittaya Kerdprasop

Currently, computational modeling methods based on machine learning techniques in medical imaging are gaining more and more interests from health science researchers and practitioners. The high interest is due to efficiency of modern algorithms such as convolutional neural networks (CNN) and other types of deep learning. CNN is the most popular deep learning algorithm because of its prominent capability on learning key features from images that help capturing the correct class of images. Moreover, several sophisticated CNN architectures with many learning layers are available in the cloud computing environment. In this study, we are interested in performing empirical research work to compare performance of CNNs when they are dealing with noisy medical images. We design a comparative study to observe performance of the AlexNet CNN model on classifying diseases from medical images of two types: images with noise and images without noise. For the case of noisy images, the data had been further separated into two groups: a group of images that noises harmoniously cover the area of the disease symptoms (NIH) and a group of images that noises do not harmoniously cover the area of the disease symptoms (NNIH). The experimental results reveal that NNIH has insignificant effect toward the performance of CNN. For the group of NIH, we notice some effect of noise on CNN learning performance. In NIH group of images, the data preparation process before learning can improve the efficiency of CNN.


Face recognition plays a vital role in security purpose. In recent years, the researchers have focused on the pose illumination, face recognition, etc,. The traditional methods of face recognition focus on Open CV’s fisher faces which results in analyzing the face expressions and attributes. Deep learning method used in this proposed system is Convolutional Neural Network (CNN). Proposed work includes the following modules: [1] Face Detection [2] Gender Recognition [3] Age Prediction. Thus the results obtained from this work prove that real time age and gender detection using CNN provides better accuracy results compared to other existing approaches.


Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2258
Author(s):  
Madhab Raj Joshi ◽  
Lewis Nkenyereye ◽  
Gyanendra Prasad Joshi ◽  
S. M. Riazul Islam ◽  
Mohammad Abdullah-Al-Wadud ◽  
...  

Enhancement of Cultural Heritage such as historical images is very crucial to safeguard the diversity of cultures. Automated colorization of black and white images has been subject to extensive research through computer vision and machine learning techniques. Our research addresses the problem of generating a plausible colored photograph of ancient, historically black, and white images of Nepal using deep learning techniques without direct human intervention. Motivated by the recent success of deep learning techniques in image processing, a feed-forward, deep Convolutional Neural Network (CNN) in combination with Inception- ResnetV2 is being trained by sets of sample images using back-propagation to recognize the pattern in RGB and grayscale values. The trained neural network is then used to predict two a* and b* chroma channels given grayscale, L channel of test images. CNN vividly colorizes images with the help of the fusion layer accounting for local features as well as global features. Two objective functions, namely, Mean Squared Error (MSE) and Peak Signal-to-Noise Ratio (PSNR), are employed for objective quality assessment between the estimated color image and its ground truth. The model is trained on the dataset created by ourselves with 1.2 K historical images comprised of old and ancient photographs of Nepal, each having 256 × 256 resolution. The loss i.e., MSE, PSNR, and accuracy of the model are found to be 6.08%, 34.65 dB, and 75.23%, respectively. Other than presenting the training results, the public acceptance or subjective validation of the generated images is assessed by means of a user study where the model shows 41.71% of naturalness while evaluating colorization results.


Vibration ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 341-356
Author(s):  
Jessada Sresakoolchai ◽  
Sakdirat Kaewunruen

Various techniques have been developed to detect railway defects. One of the popular techniques is machine learning. This unprecedented study applies deep learning, which is a branch of machine learning techniques, to detect and evaluate the severity of rail combined defects. The combined defects in the study are settlement and dipped joint. Features used to detect and evaluate the severity of combined defects are axle box accelerations simulated using a verified rolling stock dynamic behavior simulation called D-Track. A total of 1650 simulations are run to generate numerical data. Deep learning techniques used in the study are deep neural network (DNN), convolutional neural network (CNN), and recurrent neural network (RNN). Simulated data are used in two ways: simplified data and raw data. Simplified data are used to develop the DNN model, while raw data are used to develop the CNN and RNN model. For simplified data, features are extracted from raw data, which are the weight of rolling stock, the speed of rolling stock, and three peak and bottom accelerations from two wheels of rolling stock. In total, there are 14 features used as simplified data for developing the DNN model. For raw data, time-domain accelerations are used directly to develop the CNN and RNN models without processing and data extraction. Hyperparameter tuning is performed to ensure that the performance of each model is optimized. Grid search is used for performing hyperparameter tuning. To detect the combined defects, the study proposes two approaches. The first approach uses one model to detect settlement and dipped joint, and the second approach uses two models to detect settlement and dipped joint separately. The results show that the CNN models of both approaches provide the same accuracy of 99%, so one model is good enough to detect settlement and dipped joint. To evaluate the severity of the combined defects, the study applies classification and regression concepts. Classification is used to evaluate the severity by categorizing defects into light, medium, and severe classes, and regression is used to estimate the size of defects. From the study, the CNN model is suitable for evaluating dipped joint severity with an accuracy of 84% and mean absolute error (MAE) of 1.25 mm, and the RNN model is suitable for evaluating settlement severity with an accuracy of 99% and mean absolute error (MAE) of 1.58 mm.


Sign in / Sign up

Export Citation Format

Share Document