scholarly journals Spatial Landslide Susceptibility Assessment Based on Novel Neural-Metaheuristic Geographic Information System Based Ensembles

Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4698 ◽  
Author(s):  
Hossein Moayedi ◽  
Abdolreza Osouli ◽  
Dieu Tien Bui ◽  
Loke Kok Foong

Regular optimization techniques have been widely used in landslide-related problems. This paper outlines two novel optimizations of artificial neural network (ANN) using grey wolf optimization (GWO) and biogeography-based optimization (BBO) metaheuristic algorithms in the Ardabil province, Iran. To this end, these algorithms are synthesized with a multi-layer perceptron (MLP) neural network for optimizing its computational parameters. The used spatial database consists of fourteen landslide conditioning factors, namely elevation, slope aspect, land use, plan curvature, profile curvature, soil type, distance to river, distance to road, distance to fault, rainfall, slope degree, stream power index (SPI), topographic wetness index (TWI) and lithology. 70% of the identified landslides are randomly selected to train the proposed models and the remaining 30% is used to evaluate the accuracy of them. Also, the frequency ratio theory is used to analyze the spatial interaction between the landslide and conditioning factors. Obtained values of area under the receiver operating characteristic curve, as well as mean square error and mean absolute error showed that both GWO and BBO hybrid algorithms could efficiently improve the learning capability of the MLP. Besides, the BBO-based ensemble surpasses other implemented models.

Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3590 ◽  
Author(s):  
Bui ◽  
Moayedi ◽  
Kalantar ◽  
Osouli ◽  
Gör ◽  
...  

In this research, the novel metaheuristic algorithm Harris hawks optimization (HHO) is applied to landslide susceptibility analysis in Western Iran. To this end, the HHO is synthesized with an artificial neural network (ANN) to optimize its performance. A spatial database comprising 208 historical landslides, as well as 14 landslide conditioning factors—elevation, slope aspect, plan curvature, profile curvature, soil type, lithology, distance to the river, distance to the road, distance to the fault, land cover, slope degree, stream power index (SPI), topographic wetness index (TWI), and rainfall—is prepared to develop the ANN and HHO–ANN predictive tools. Mean square error and mean absolute error criteria are defined to measure the performance error of the models, and area under the receiving operating characteristic curve (AUROC) is used to evaluate the accuracy of the generated susceptibility maps. The findings showed that the HHO algorithm effectively improved the performance of ANN in both recognizing (AUROCANN = 0.731 and AUROCHHO–ANN = 0.777) and predicting (AUROCANN = 0.720 and AUROCHHO–ANN = 0.773) the landslide pattern.


2019 ◽  
Vol 9 (20) ◽  
pp. 4340 ◽  
Author(s):  
Moayedi ◽  
Kalantar ◽  
Foong ◽  
Tien Bui ◽  
Motevalli

Slump is a workability-related characteristic of concrete mixture. This paper investigates the efficiency of a novel optimizer, namely ant lion optimization (ALO), for fine-tuning of a neural network (NN) in the field of concrete slump prediction. Two well-known optimization techniques, biogeography-based optimization (BBO) and grasshopper optimization algorithm (GOA), are also considered as benchmark models to be compared with ALO. Considering seven slump effective factors, namely cement, slag, water, fly ash, superplasticizer (SP), fine aggregate (FA), and coarse aggregate (CA), the mentioned algorithms are synthesized with a neural network to determine the best-fitted neural parameters. The most appropriate complexity of each ensemble is also found by a population-based sensitivity analysis. The findings revealed that the proposed ALO-NN model acquires a good approximation of concrete slump, regarding the calculated root mean square error (RMSE = 3.7788) and mean absolute error (MAE = 3.0286). It also outperformed both BBO-NN (RMSE = 4.1859 and MAE = 3.3465) and GOA-NN (RMSE = 4.9553 and MAE = 3.8576) ensembles.


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3451 ◽  
Author(s):  
Usman Salihu Lay ◽  
Biswajeet Pradhan ◽  
Zainuddin Bin Md Yusoff ◽  
Ahmad Fikri Bin Abdallah ◽  
Jagannath Aryal ◽  
...  

Cameron Highland is a popular tourist hub in the mountainous area of Peninsular Malaysia. Most communities in this area suffer frequent incidence of debris flow, especially during monsoon seasons. Despite the loss of lives and properties recorded annually from debris flow, most studies in the region concentrate on landslides and flood susceptibilities. In this study, debris-flow susceptibility prediction was carried out using two data mining techniques; Multivariate Adaptive Regression Splines (MARS) and Support Vector Regression (SVR) models. The existing inventory of debris-flow events (640 points) were selected for training 70% (448) and validation 30% (192). Twelve conditioning factors namely; elevation, plan-curvature, slope angle, total curvature, slope aspect, Stream Transport Index (STI), profile curvature, roughness index, Stream Catchment Area (SCA), Stream Power Index (SPI), Topographic Wetness Index (TWI) and Topographic Position Index (TPI) were selected from Light Detection and Ranging (LiDAR)-derived Digital Elevation Model (DEM) data. Multi-collinearity was checked using Information Factor, Cramer’s V, and Gini Index to identify the relative importance of conditioning factors. The susceptibility models were produced and categorized into five classes; not-susceptible, low, moderate, high and very-high classes. Models performances were evaluated using success and prediction rates where the area under the curve (AUC) showed a higher performance of MARS (93% and 83%) over SVR (76% and 72%). The result of this study will be important in contingency hazards and risks management plans to reduce the loss of lives and properties in the area.


2021 ◽  
Author(s):  
Md. Sharafat Chowdhury ◽  
Bibi Hafsa

Abstract This study attempts to produce Landslide Susceptibility Map for Chattagram District of Bangladesh by using five GIS based bivariate statistical models, namely the Frequency Ratio (FR), Shanon’s Entropy (SE), Weight of Evidence (WofE), Information Value (IV) and Certainty Factor (CF). A secondary landslide inventory database was used to correlate the previous landslides with the landslide conditioning factors. Sixteen landslide conditioning factors of Slope Aspect, Slope Angle, Geology, Elevation, Plan Curvature, Profile Curvature, General Curvature, Topographic Wetness Index, Stream Power Index, Sediment Transport Index, Topographic Roughness Index, Distance to Stream, Distance to Anticline, Distance to Fault, Distance to Road and NDVI were used. The Area Under Curve (AUC) was used for validation of the LSMs. The predictive rate of AUC for FR, SE, WofE, IV and CF were 76.11%, 70.11%, 78.93%, 76.57% and 80.43% respectively. CF model indicates 15.04% of areas are highly susceptible to landslide. All the models showed that the high elevated areas are more susceptible to landslide where the low-lying river basin areas have a low probability of landslide occurrence. The findings of this research will contribute to land use planning, management and hazard mitigation of the CHT region.


Author(s):  
Viet-Ha Nhu ◽  
Ayub Mohammadi ◽  
Himan Shahabi ◽  
Baharin Bin Ahmad ◽  
Nadhir Al-Ansari ◽  
...  

We used AdaBoost (AB), alternating decision tree (ADTree), and their combination as an ensemble model (AB-ADTree) to spatially predict landslides in the Cameron Highlands, Malaysia. The models were trained with a database of 152 landslides compiled using Synthetic Aperture Radar Interferometry, Google Earth images, and field surveys, and 17 conditioning factors (slope, aspect, elevation, distance to road, distance to river, proximity to fault, road density, river density, normalized difference vegetation index, rainfall, land cover, lithology, soil types, curvature, profile curvature, stream power index, and topographic wetness index). We carried out the validation process using the area under the receiver operating characteristic curve (AUC) and several parametric and non-parametric performance metrics, including positive predictive value, negative predictive value, sensitivity, specificity, accuracy, root mean square error, and the Friedman and Wilcoxon sign rank tests. The AB model (AUC = 0.96) performed better than the ensemble AB-ADTree model (AUC = 0.94) and successfully outperformed the ADTree model (AUC = 0.59) in predicting landslide susceptibility. Our findings provide insights into the development of more efficient and accurate landslide predictive models that can be used by decision makers and land-use managers to mitigate landslide hazards.


2016 ◽  
Vol 34 (2) ◽  
pp. 239-249 ◽  
Author(s):  
Jeiner Yobany Buitrago E. ◽  
Luis Joel Martínez M.

The objective of this research was to develop a model for assessing the risk of erosion, exploring the potential of DEMs from SRTM, ASTER, ALOS PALSAR and one made with interpolation of a 1:25,000 contour map to calculate the variables of the relief that have greater impact on erosion. Several geomorphometric parameters, such as slope, aspect, profile and plan curvature, topographic wetness index, stream power index, and sediment transport capacity were computed from the DEM's elevation, some fuzzy logic functions proposed to evaluate the incidence of each parameter on erosion risk in a mountainous area of Colombia. The results showed that the use of DEM data is a relatively easy, uncostly method to identify, in a qualitative way, the risk of erosion and contribute to the enhancement of erosion information that is obtained with conventional general soil surveys.


Author(s):  
B. Kalantar ◽  
N. Ueda ◽  
H. A. H. Al-Najjar ◽  
V. Saeidi ◽  
M. B. A. Gibril ◽  
...  

Abstract. This study investigates the effectiveness of three datasets for the prediction of landslides in the Sajadrood catchment (Babol County, Mazandaran Province, Iran). The three datasets (D1, D2 and D3) are constructed based on fourteen conditioning factors (CFs) obtained from Digital Elevation Model (DEM) derivatives, topography maps, land use maps and geological maps. Precisely, D1 consists of all 14 CFs namely altitude, slope, aspect, topographic wetness index (TWI), terrain roughness index (TRI), distance to fault, distance to stream, distance to road, total curvature, profile curvatures, plan curvature, land use, steam power index (SPI) and geology. D2, on the other hand, is a subset of D1, consisting of eight CFs. This reduction was achieved by exploiting the Variance Inflation Factor, Gini Importance Indices and Chi-Square factor optimization methods. Dataset D3 includes only selected factors derived from the DEM. Three supervised classification algorithms were trained for landslide prediction namely the Support Vector Machine (SVM), Logistic Regression (LR), and Artificial Neural Network (ANN). Experimental results indicate that D2 performed the best for landslide prediction with the SVM producing the best overall accuracy at 82.81%, followed by LR (81.71%) and ANN (80.18%). Extensive investigations on the results of factor optimization analysis indicate that the CFs distance to road, altitude, and geology were significant contributors to the prediction results. Land use map, slope, total-, plan-, and profile curvature and TRI, on the other hand, were deemed redundant. The analysis also revealed that sole reliance on Gini Indices could lead to inefficient optimization.


2018 ◽  
Vol 22 (9) ◽  
pp. 4771-4792 ◽  
Author(s):  
Khabat Khosravi ◽  
Mahdi Panahi ◽  
Dieu Tien Bui

Abstract. Groundwater is one of the most valuable natural resources in the world (Jha et al., 2007). However, it is not an unlimited resource; therefore understanding groundwater potential is crucial to ensure its sustainable use. The aim of the current study is to propose and verify new artificial intelligence methods for the spatial prediction of groundwater spring potential mapping at the Koohdasht–Nourabad plain, Lorestan province, Iran. These methods are new hybrids of an adaptive neuro-fuzzy inference system (ANFIS) and five metaheuristic algorithms, namely invasive weed optimization (IWO), differential evolution (DE), firefly algorithm (FA), particle swarm optimization (PSO), and the bees algorithm (BA). A total of 2463 spring locations were identified and collected, and then divided randomly into two subsets: 70 % (1725 locations) were used for training models and the remaining 30 % (738 spring locations) were utilized for evaluating the models. A total of 13 groundwater conditioning factors were prepared for modeling, namely the slope degree, slope aspect, altitude, plan curvature, stream power index (SPI), topographic wetness index (TWI), terrain roughness index (TRI), distance from fault, distance from river, land use/land cover, rainfall, soil order, and lithology. In the next step, the step-wise assessment ratio analysis (SWARA) method was applied to quantify the degree of relevance of these groundwater conditioning factors. The global performance of these derived models was assessed using the area under the curve (AUC). In addition, the Friedman and Wilcoxon signed-rank tests were carried out to check and confirm the best model to use in this study. The result showed that all models have a high prediction performance; however, the ANFIS–DE model has the highest prediction capability (AUC = 0.875), followed by the ANFIS–IWO model, the ANFIS–FA model (0.873), the ANFIS–PSO model (0.865), and the ANFIS–BA model (0.839). The results of this research can be useful for decision makers responsible for the sustainable management of groundwater resources.


2020 ◽  
Vol 4 (2) ◽  
pp. 45-63
Author(s):  
Ishaku Bashir ◽  
Rachel Sallau ◽  
Abubakar Sheikh ◽  
Zuni Aminu ◽  
Shu’aib Hassan

This paper explores the potentiality of GIS-based Multi-Criteria Decision Analysis (MCDA) and Analytical Hierarchy Process (AHP) for gully vulnerability mapping. Multilayer information of basin characteristics, such as drainage density, Topographic Wetness Index (TWI), Stream Power Index (SPI), slope aspect and land use land cover (LULC), were used in this study to develop a Gully Vulnerability Index (GVI). A weighted approach was implemented on each criterion relative to their inferred influence on gully vulnerability and validated by determining the Consistency Ratio (CR). Findings show a varying magnitude of gully vulnerability across the study area. The low to medium gully vulnerability class was dominant covering a land area of 6557ha (21.25%), and mostly confined to developed areas. Still, it is noteworthy to observe that the severe gully vulnerability class covers a substantial land area of 5825ha (18.88%), which presents a great risk to infrastructural development and human settlements in the study area. The study has a model predictive capability with accuracy rate of 84.62%. The integration of the MCDA and AHP into GIS workflow is an effective approach critical to minimize the limitations associated with gully occurrence analysis, using a singular basin characteristic. The results obtained in the study will equally be important in determining gully risk zones, circumspect urban development, tracking and proper infrastructure construction plans for long-term gully disaster mitigation.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 679 ◽  
Author(s):  
Davoud Davoudi Moghaddam ◽  
Omid Rahmati ◽  
Ali Haghizadeh ◽  
Zahra Kalantari

In some arid regions, groundwater is the only source of water for human needs, so understanding groundwater potential is essential to ensure its sustainable use. In this study, three machine learning models (Genetic Algorithm for Rule-Set Production (GARP), Quick Unbiased Efficient Statistical Tree (QUEST), and Random Forest (RF)) were applied and verified for spatial prediction of groundwater in a mountain bedrock aquifer in Piranshahr Watershed, Iran. A spring location dataset consisting of 141 springs was prepared by field surveys, and from this three different sample datasets (S1–S3) were randomly generated (70% for training and 30% for validation). A total of 10 groundwater conditioning factors were prepared for modeling, namely slope percent, relative slope position (RSP), plan curvature, altitude, drainage density, slope aspect, topographic wetness index (TWI), terrain ruggedness index (TRI), land use, and lithology. The area under the receiver operating characteristic curve (AUC) and true skill statistic (TSS) were used to evaluate the accuracy of models. The results indicated that all models had excellent goodness-of-fit and predictive performance, but that RF (AUCmean = 0.995, TSSmean = 0.89) and GARP (AUCmean = 0.957, TSSmean = 0.82) outperformed QUEST (AUCmean = 0.949, TSSmean = 0.74). In robustness analysis, RF was slightly more sensitive than GARP and QUEST, making it necessary to consider several random partitioning options for preparing training and validation groups. The outcomes of this study can be useful in sustainable management of groundwater resources in the study region.


Sign in / Sign up

Export Citation Format

Share Document