scholarly journals Precoding Design for Energy Efficiency Maximization in MIMO Half-Duplex Wireless Sensor Networks with SWIPT

Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4923 ◽  
Author(s):  
Liang Xue ◽  
Jin-Long Wang ◽  
Jie Li ◽  
Yan-Long Wang ◽  
Xin-Ping Guan

This paper explores the energy efficiency (EE) maximization problem in single-hop multiple-input multiple-output (MIMO) half-duplex wireless sensor networks (WSNs) with simultaneous wireless information and power transfer (SWIPT). Such an energy efficiency maximization problem is considered in two different scenarios, in which the number of energy-harvesting (EH) sensor nodes are different. In the scenario where the single energy-harvesting sensor node is applied, the modeled network consists of two multiple-antenna transceivers, of which the energy-constrained energy-harvesting sensor node harvests energy from the signals transmitted from the source by a power splitting (PS) scheme. In the scenario of multiple EH sensor nodes, K energy-constrained sensor nodes are applied and the same quantity of antennas are equiped on each of them. The optimization problem is formulated to maximize the energy efficiency by jointly designing the transceivers’ precoding matrices and the PS factor of the energy-harvesting sensor node. The considered constraints are the required harvested energy, the transmission power limit and the requirement on the data rate. The joint design of the precoding matrices and the PS factor can be formulated as an optimization problem, which can be transformed into two sub-problems. An alternating algorithm based on Dinkelbach is proposed to solve the two sub-problems. The convergence of the proposed alternating algorithm, the solution optimality and the computational complexity are analyzed in the paper. Simulation results demonstrate the convergence and effectiveness of our proposed algorithm for realizing the maximum energy efficiency.

Author(s):  
Ajay Kaushik ◽  
S. Indu ◽  
Daya Gupta

Wireless sensor networks (WSNs) are becoming increasingly popular due to their applications in a wide variety of areas. Sensor nodes in a WSN are battery operated which outlines the need of some novel protocols that allows the limited sensor node battery to be used in an efficient way. The authors propose the use of nature-inspired algorithms to achieve energy efficient and long-lasting WSN. Multiple nature-inspired techniques like BBO, EBBO, and PSO are proposed in this chapter to minimize the energy consumption in a WSN. A large amount of data is generated from WSNs in the form of sensed information which encourage the use of big data tools in WSN domain. WSN and big data are closely connected since the large amount of data emerging from sensors can only be handled using big data tools. The authors describe how the big data can be framed as an optimization problem and the optimization problem can be effectively solved using nature-inspired algorithms.


Author(s):  
Ali Al-Qamaji ◽  
Baris Atakan

AbstractWireless sensor networks (WSNs) consist of compact deployed sensor nodes which collectively report their sensed readings about an event to the Base Station (BS). In WSNs, due to the dense deployment, sensor readings can be spatially correlated and it is nonessential to transmit all their readings to the BS. Therefore, for more energy efficient, it is vital to choose which sensor node should report their sensed readings to the BS. In this paper, the event distortion-based clustering (EDC) algorithm is proposed for the spatially correlated sensor nodes. Here, the sensor nodes are assumed to harvest energy from ambient electromagnetic radiation source. The EDC algorithm allows the energy-harvesting sensor nodes to select and eliminate nonessential nodes while maintain an acceptable level of distortion at the BS. To measure the reliability, a theoretical framework of the distortion function is first derived for both single-hop and two-hop communication scenarios. Then, based on the derived theoretical framework, the EDC algorithm is introduced. Through extensive simulations, the performance of the EDC algorithm is evaluated in terms of achievable distortion level, number of alive nodes and harvested energy levels. As a result, EDC algorithm can successfully exploit both the spatial correlation and energy harvesting to improve the energy efficiency while preserving an acceptable level of distortion. Furthermore, the performance comparisons reveal that the two-hop communication model outperforms the single-hop model in terms of the distortion and energy-efficiency.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2917 ◽  
Author(s):  
Zaki Masood ◽  
Sokhee Jung ◽  
Yonghoon Choi

Paradigm shift to wireless power transfer provides opportunities for ultra-low-power devices to increase energy storage from electromagnetic (EM) sources. The notable gain occurs when EM sources deliver information as a meaningful signal with power transfer. Thus, energy harvesting (EH) is an active approach to obtain power from surrounding EM sources that transfer energy deliberately. This paper discusses energy efficiency (EE) trade-offs and EE maximization in simultaneous wireless power and information transfer (SWIPT) for wireless sensor networks (WSNs). The power splitting (PS) and time switching (TS) model for SWIPT are investigated in detail, where EE optimization is essential. This work formulates EE maximization problem as non-linear fractional programming and proposes a novel algorithm to solve the maximization problem using Lagrange dual decomposition. Numerical results reveal that the proposed algorithm maximizes EE in both PS and TS modes through noteworthy improvements.


Author(s):  
A. Radhika ◽  
D. Haritha

Wireless Sensor Networks, have witnessed significant amount of improvement in research across various areas like Routing, Security, Localization, Deployment and above all Energy Efficiency. Congestion is a problem of  importance in resource constrained Wireless Sensor Networks, especially for large networks, where the traffic loads exceed the available capacity of the resources . Sensor nodes are prone to failure and the misbehaviour of these faulty nodes creates further congestion. The resulting effect is a degradation in network performance, additional computation and increased energy consumption, which in turn decreases network lifetime. Hence, the data packet routing algorithm should consider congestion as one of the parameters, in addition to the role of the faulty nodes and not merely energy efficient protocols .Nowadays, the main central point of attraction is the concept of Swarm Intelligence based techniques integration in WSN.  Swarm Intelligence based Computational Swarm Intelligence Techniques have improvised WSN in terms of efficiency, Performance, robustness and scalability. The main objective of this research paper is to propose congestion aware , energy efficient, routing approach that utilizes Ant Colony Optimization, in which faulty nodes are isolated by means of the concept of trust further we compare the performance of various existing routing protocols like AODV, DSDV and DSR routing protocols, ACO Based Routing Protocol  with Trust Based Congestion aware ACO Based Routing in terms of End to End Delay, Packet Delivery Rate, Routing Overhead, Throughput and Energy Efficiency. Simulation based results and data analysis shows that overall TBC-ACO is 150% more efficient in terms of overall performance as compared to other existing routing protocols for Wireless Sensor Networks.


Author(s):  
Sunita Gupta ◽  
Sakar Gupta ◽  
Dinesh Goyal

: A serious problem in Wireless Sensor Networks (WSNs) is to attain high-energy efficiency as battery is used to power and have limited stored energy. They can’t be suitably replaced or recharged. Appearance of renewable energy harvesting techniques and their combination with sensor devices gives Energy Harvesting Wireless Sensor Networks (EHWSNs). IoT is now becoming part of our lives, comforting simplifying our routines and work life. IoT is very popular . It connects together, computes, communicates and performs the required task. IoT is actually a network of physical devices or things that can interact with each other to share information. This paper gives an overview of WSN and IoT, related work, different ways of connecting WSN with internet, development of smart home, challenges for WSN etc. Next a Framework for performance optimization in IoT is given and QC-PC-MCSC heuristic is analyzed in terms of Energy Efficiency and Life Time of a sensor on Energy Latency Density Design Space, a topology management application that is power efficient. QC-PC-MCSC and QC-MCSC are compared for Energy Efficiency and Life Time of a sensor over energy latency density design space, a topology management application.


2019 ◽  
Vol 11 (21) ◽  
pp. 6171 ◽  
Author(s):  
Jangsik Bae ◽  
Meonghun Lee ◽  
Changsun Shin

With the expansion of smart agriculture, wireless sensor networks are being increasingly applied. These networks collect environmental information, such as temperature, humidity, and CO2 rates. However, if a faulty sensor node operates continuously in the network, unnecessary data transmission adversely impacts the network. Accordingly, a data-based fault-detection algorithm was implemented in this study to analyze data of sensor nodes and determine faults, to prevent the corresponding nodes from transmitting data; thus, minimizing damage to the network. A cloud-based “farm as a service” optimized for smart farms was implemented as an example, and resource management of sensors and actuators was provided using the oneM2M common platform. The effectiveness of the proposed fault-detection model was verified on an integrated management platform based on the Internet of Things by collecting and analyzing data. The results confirm that when a faulty sensor node is not separated from the network, unnecessary data transmission of other sensor nodes occurs due to continuous abnormal data transmission; thus, increasing energy consumption and reducing the network lifetime.


Sensor nodes are exceedingly energy compelled instrument, since it is battery operated instruments. In wsn network, every node is liable to the data transmission through the wireless mode [1]. Wireless sensor networks (WSN) is made of a huge no. of small nodes with confined functionality. The essential theme of the wireless sensor network is energy helpless and the WSN is collection of sensor. Every sensor terminal is liable to sensing, store and information clan and send it forwards into sink. The communication within the node is done via wireless network [3].Energy efficiency is the main concentration of a desining the better routing protocol. LEACH is a protocol. This is appropriate for short range network, since imagine that whole sensor node is capable of communication with inter alia and efficient to access sink node, which is not always correct for a big network. Hence, coverage is a problem which we attempt to resolve [6]. The main focus within wireless sensor networks is to increase the network life-time span as much as possible, so that resources can be utilizes efficiently and optimally. Various approaches which are based on the clustering are very much optimal in functionality. Life-time of the network is always connected with sensor node’s energy implemented at distant regions for stable and defect bearable observation [10].


2014 ◽  
Vol 573 ◽  
pp. 407-411
Author(s):  
Chelliah Pandeeswaran ◽  
Natrajan Papa ◽  
Sundar G. Jayesh

MAC protocol design in Wireless sensor networks becomes vibrant research field for the past several years. In this paper an EE-Hybrid MAC protocol (Energy efficient hybrid Medium Access Control) has been proposed, which is energy efficient and low latency MAC protocol, which uses interrupt method to assign priority for certain wireless sensor nodes assumed to be present in critical loops of industrial process control domain. EE-Hybrid MAC overcomes some of the limitations in the existing approaches. Industrial wireless sensor network require a suitable MAC protocol which offers energy efficiency and capable of handling emergency situations in industrial automation domain. Time critical and mission critical applications demands not only energy efficiency but strict timeliness and reliability. Harsh environmental condition and dynamic network topologies may cause industrial sensor to malfunction, so the developed protocol must adapt to changing topology and harsh environment. Most of the existing MAC protocols have number of limitations for industrial application domain In industrial automation scenario, certain sensor loops are found to be time critical, where data’s have to be transferred without any further delay. The proposed EE-Hybrid MAC protocol is simulated in NS2 environment, from the result it is observed that proposed protocol provides better performance compared to the conventional MAC protocols.


Author(s):  
C. R. Bharathi ◽  
Alapati Naresh ◽  
Arepalli Peda Gopi ◽  
Lakshman Narayana Vejendla

In wireless sensor networks (WSN), the majority of the inquiries are issued at the base station. WSN applications frequently require collaboration among countless sensor nodes in a network. One precedent is to persistently screen a region and report occasions. A sensor node in a WSN is initially allocated with an energy level, and based on the tasks of that sensor node, energy will be reduced. In this chapter, two proposed methods for secure network cluster formation and authentication are discussed. When a network is established then all the nodes in it must register with cluster head and then authentication is performed. The selection of cluster head is done using a novel selection algorithm and for authenticating the nodes. Also, a novel algorithm for authentication is used in this chapter. The validation and authorization of nodes are carried over by managing the keys in WSN. The results have been analyzed using NS2 simulator with an aid of list of relevant parameters.


Author(s):  
Nandoori Srikanth ◽  
Muktyala Sivaganga Prasad

<p>Wireless Sensor Networks (WSNs) can extant the individual profits and suppleness with regard to low-power and economical quick deployment for numerous applications. WSNs are widely utilized in medical health care, environmental monitoring, emergencies and remote control areas. Introducing of mobile nodes in clusters is a traditional approach, to assemble the data from sensor nodes and forward to the Base station. Energy efficiency and lifetime improvements are key research areas from past few decades. In this research, to solve the energy limitation to upsurge the network lifetime, Energy efficient trust node based routing protocol is proposed. An experimental validation of framework is focused on Packet Delivery Ratio, network lifetime, throughput, energy consumption and network loss among all other challenges. This protocol assigns some high energy nodes as trusted nodes, and it decides the mobility of data collector.  The energy of mobile nodes, and sensor nodes can save up to a great extent by collecting data from trusted nodes based on their trustworthiness and energy efficiency.  The simulation outcome of our evaluation shows an improvement in all these parameters than existing clustering and Routing algorithms.<strong></strong></p>


Sign in / Sign up

Export Citation Format

Share Document