scholarly journals Inter-Sensor Calibration between HY-2B and AMSR2 Passive Microwave Data in Land Surface and First Result for Snow Water Equivalent Retrieval

Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 5023
Author(s):  
Shuo Gao ◽  
Zhen Li ◽  
Quan Chen ◽  
Wu Zhou ◽  
Mingsen Lin ◽  
...  

The self-designed HaiYang-2B (HY-2B) satellite was launched on 24 October 2018 in China at 22:57 UT in a 99.34° inclination sun-synchronous orbit. The Scanning Microwave Radiometer (SMR) on the core observatory has the capability to provide near-real-time multi-channel brightness temperature (Tb) observations, which are designed mainly for improving the level of marine forecasting and monitoring, serving the development and utilization of marine resources. After internal calibration and ocean calibration, the first effort to retrieve land surface snow parameters was performed in this study, which obtained extremely low accuracy both in snow extent and snow mass. Accordingly, land inter-sensor calibration was carried out between SMR and the Advanced Microwave Scanning Radiometer 2 (AMSR2) in order to broaden the research and application of SMR data on the Earth’s land surface. Finally, we evaluated the consistency of the snow extent and snow mass derived from the initial and land-calibrated SMR data. The results indicated that a systematic SMR cold deviation whose magnitude depends on the channel is present for all the compared channels. After intercalibration, the conformity of the snow extent and snow mass were substantially improved compared to before; the relative bias of the snow extent and snow mass decreased from −49.97% to 2.97% and from −51.71% to 3.01%, respectively.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kari Luojus ◽  
Jouni Pulliainen ◽  
Matias Takala ◽  
Juha Lemmetyinen ◽  
Colleen Mortimer ◽  
...  

AbstractWe describe the Northern Hemisphere terrestrial snow water equivalent (SWE) time series covering 1979–2018, containing daily, monthly and monthly bias-corrected SWE estimates. The GlobSnow v3.0 SWE dataset combines satellite-based passive microwave radiometer data (Nimbus-7 SMMR, DMSP SSM/I and DMSP SSMIS) with ground based synoptic snow depth observations using bayesian data assimilation, incorporating the HUT Snow Emission model. The original GlobSnow SWE retrieval methodology has been further developed and is presented in its current form in this publication. The described GlobSnow v3.0 monthly bias-corrected dataset was applied to provide continental scale estimates on the annual maximum snow mass and its trend during the period 1980 to 2018.


2013 ◽  
Vol 17 (7) ◽  
pp. 2781-2796 ◽  
Author(s):  
S. Shukla ◽  
J. Sheffield ◽  
E. F. Wood ◽  
D. P. Lettenmaier

Abstract. Global seasonal hydrologic prediction is crucial to mitigating the impacts of droughts and floods, especially in the developing world. Hydrologic predictability at seasonal lead times (i.e., 1–6 months) comes from knowledge of initial hydrologic conditions (IHCs) and seasonal climate forecast skill (FS). In this study we quantify the contributions of two primary components of IHCs – soil moisture and snow water content – and FS (of precipitation and temperature) to seasonal hydrologic predictability globally on a relative basis throughout the year. We do so by conducting two model-based experiments using the variable infiltration capacity (VIC) macroscale hydrology model, one based on ensemble streamflow prediction (ESP) and another based on Reverse-ESP (Rev-ESP), both for a 47 yr re-forecast period (1961–2007). We compare cumulative runoff (CR), soil moisture (SM) and snow water equivalent (SWE) forecasts from each experiment with a VIC model-based reference data set (generated using observed atmospheric forcings) and estimate the ratio of root mean square error (RMSE) of both experiments for each forecast initialization date and lead time, to determine the relative contribution of IHCs and FS to the seasonal hydrologic predictability. We find that in general, the contributions of IHCs to seasonal hydrologic predictability is highest in the arid and snow-dominated climate (high latitude) regions of the Northern Hemisphere during forecast periods starting on 1 January and 1 October. In mid-latitude regions, such as the Western US, the influence of IHCs is greatest during the forecast period starting on 1 April. In the arid and warm temperate dry winter regions of the Southern Hemisphere, the IHCs dominate during forecast periods starting on 1 April and 1 July. In equatorial humid and monsoonal climate regions, the contribution of FS is generally higher than IHCs through most of the year. Based on our findings, we argue that despite the limited FS (mainly for precipitation) better estimates of the IHCs could lead to improvement in the current level of seasonal hydrologic forecast skill over many regions of the globe at least during some parts of the year.


2021 ◽  
Author(s):  
Vincent Vionnet ◽  
Colleen Mortimer ◽  
Mike Brady ◽  
Louise Arnal ◽  
Ross Brown

Abstract. In situ measurements of snow water equivalent (SWE) – the depth of water that would be produced if all the snow melted – are used in many applications including water management, flood forecasting, climate monitoring, and evaluation of hydrological and land surface models. The Canadian historical SWE dataset (CanSWE) combines manual and automated pan-Canadian SWE observations collected by national, provincial and territorial agencies as well as hydropower companies. Snow depth and derived bulk snow density are also included when available. This new dataset supersedes the previous Canadian Historical Snow Survey (CHSSD) dataset published by Brown et al. (2019), and this paper describes the efforts made to correct metadata, remove duplicate observations, and quality control records. The CanSWE dataset was compiled from 15 different sources and includes SWE information for all provinces and territories that measure SWE. Data were updated to July 2020 and new historical data from the Government of Northwest Territories, Government of Newfoundland and Labrador, Saskatchewan Water Security Agency, and Hydro Quebec were included. CanSWE includes over one million SWE measurements from 2607 different locations across Canada over the period 1928–2020. It is publicly available at https://doi.org/10.5281/zenodo.4734372 (Vionnet et al., 2021).


2021 ◽  
Author(s):  
Danny Risto ◽  
Bodo Ahrens ◽  
Kristina Fröhlich

<p>Besides the ocean, the land surface is a crucial component for predictability at (sub-)seasonal time scales. While the prediction of 2m temperature up to several months is possible for some maritime regions, continental regions lack predictive skill. Improved representation of the land surface in seasonal forecasting systems could help to close this gap. Snow cover fraction and snow water equivalent (SWE) are essential properties of the land surface. A snow-covered land surface leads to local temperature decreases in the overlying air (snow-albedo effect and high emissivity) and melting snow cools the surface air and contributes to soil moisture. First, we analyse the dynamical relationships between snow, 2m temperature and sensible/latent heat fluxes in reanalysis data in the northern hemisphere. Then we investigate whether these relationships are also present in operational seasonal forecast models provided by Copernicus Climate Change Service (C3S). First results show that the quality of the 2m temperature forecast over continental regions drops sharply after the first forecasted month, whereas anomalies in snow water equivalent can be predicted up to several months. Forecasted anomalies in sensible and latent heat fluxes of continental land surfaces show predictive skill during winter and spring only locally in some places, which reduces potential interactions between snow/land surface and the atmosphere in the models. The goal of this ongoing work is to assess the importance of snow initialisation and parameterisation for seasonal forecasting.</p>


2021 ◽  
Author(s):  
Colleen Mortimer ◽  
Lawrence Mudryk ◽  
Chris Derksen ◽  
Kari Luojus ◽  
Pinja Venalainen ◽  
...  

<p>The European Space Agency Snow CCI+ project provides global homogenized long time series of daily snow extent and snow water equivalent (SWE). The Snow CCI SWE product is built on the Finish Meteorological Institute's GlobSnow algorithm, which combines passive microwave data with in situ snow depth information to estimate SWE. The CCI SWE product improves upon previous versions of GlobSnow through targeted changes to the spatial resolution, ancillary data, and snow density parameterization.</p><p>Previous GlobSnow SWE products used a constant snow density of 0.24 kg m<sup>-3</sup> to convert snow depth to SWE. The CCI SWE product applies spatially and temporally varying density fields, derived by krigging in situ snow density information from historical snow transects to correct biases in estimated SWE. Grid spacing was improved from 25 km to 12.5 km by applying an enhanced spatial resolution microwave brightness temperature dataset. We assess step-wise how each of these targeted changes acts to improve or worsen the product by evaluating with snow transect measurements and comparing hemispheric snow mass and trend differences.</p><p>Together, when compared to GlobSnow v3, these changes improved RMSE by ~5 cm and correlation by ~0.1 against a suite of snow transect measurements from Canada, Finland, and Russia. Although the hemispheric snow mass anomalies of CCI SWE and GlobSnow v3 are similar, there are sizeable differences in the climatological SWE, most notably a one month delay in the timing of peak SWE and lower SWE during the accumulation season. These shifts were expected because the variable snow density is lower than the former fixed value of 0.24 kg m<sup>-3</sup> early in the snow season, but then increases over the course of the snow season. We also examine intermediate products to determine the relative improvements attributable solely to the increased spatial resolution versus changes due to the snow density parameterizations. Such systematic evaluations are critical to directing future product development.</p>


2014 ◽  
Vol 8 (2) ◽  
pp. 471-485 ◽  
Author(s):  
S. Jörg-Hess ◽  
F. Fundel ◽  
T. Jonas ◽  
M. Zappa

Abstract. Gridded snow water equivalent (SWE) data sets are valuable for estimating the snow water resources and verify different model systems, e.g. hydrological, land surface or atmospheric models. However, changing data availability represents a considerable challenge when trying to derive consistent time series for SWE products. In an attempt to improve the product consistency, we first evaluated the differences between two climatologies of SWE grids that were calculated on the basis of data from 110 and 203 stations, respectively. The "shorter" climatology (2001–2009) was produced using 203 stations (map203) and the "longer" one (1971–2009) 110 stations (map110). Relative to map203, map110 underestimated SWE, especially at higher elevations and at the end of the winter season. We tested the potential of quantile mapping to compensate for mapping errors in map110 relative to map203. During a 9 yr calibration period from 2001 to 2009, for which both map203 and map110 were available, the method could successfully refine the spatial and temporal SWE representation in map110 by making seasonal, regional and altitude-related distinctions. Expanding the calibration to the full 39 yr showed that the general underestimation of map110 with respect to map203 could be removed for the whole winter. The calibrated SWE maps fitted the reference (map203) well when averaged over regions and time periods, where the mean error is approximately zero. However, deviations between the calibrated maps and map203 were observed at single grid cells and years. When we looked at three different regions in more detail, we found that the calibration had the largest effect in the region with the highest proportion of catchment areas above 2000 m a.s.l. and that the general underestimation of map110 compared to map203 could be removed for the entire snow season. The added value of the calibrated SWE climatology is illustrated with practical examples: the verification of a hydrological model, the estimation of snow resource anomalies and the predictability of runoff through SWE.


2019 ◽  
Vol 20 (1) ◽  
pp. 155-173 ◽  
Author(s):  
Camille Garnaud ◽  
Stéphane Bélair ◽  
Marco L. Carrera ◽  
Chris Derksen ◽  
Bernard Bilodeau ◽  
...  

Abstract Because of its location, Canada is particularly affected by snow processes and their impact on the atmosphere and hydrosphere. Yet, snow mass observations that are ongoing, global, frequent (1–5 days), and at high enough spatial resolution (kilometer scale) for assimilation within operational prediction systems are presently not available. Recently, Environment and Climate Change Canada (ECCC) partnered with the Canadian Space Agency (CSA) to initiate a radar-focused snow mission concept study to define spaceborne technological solutions to this observational gap. In this context, an Observing System Simulation Experiment (OSSE) was performed to determine the impact of sensor configuration, snow water equivalent (SWE) retrieval performance, and snow wet/dry state on snow analyses from the Canadian Land Data Assimilation System (CaLDAS). The synthetic experiment shows that snow analyses are strongly sensitive to revisit frequency since more frequent assimilation leads to a more constrained land surface model. The greatest reduction in spatial (temporal) bias is from a 1-day revisit frequency with a 91% (93%) improvement. Temporal standard deviation of the error (STDE) is mostly reduced by a greater retrieval accuracy with a 65% improvement, while a 1-day revisit reduces the temporal STDE by 66%. The inability to detect SWE under wet snow conditions is particularly impactful during the spring meltdown, with an increase in spatial RMSE of up to 50 mm. Wet snow does not affect the domain-wide annual maximum SWE nor the timing of end-of-season snowmelt timing in this case, indicating that radar measurements, although uncertain during melting events, are very useful in adding skill to snow analyses.


2017 ◽  
Vol 18 (5) ◽  
pp. 1205-1225 ◽  
Author(s):  
Diana Verseghy ◽  
Ross Brown ◽  
Libo Wang

Abstract The Canadian Land Surface Scheme (CLASS), version 3.6.1, was run offline for the period 1990–2011 over a domain centered on eastern Canada, driven by atmospheric forcing data dynamically downscaled from ERA-Interim using the Canadian Regional Climate Model. The precipitation inputs were adjusted to replicate the monthly average precipitation reported in the CRU observational database. The simulated fractional snow cover and the surface albedo were evaluated using NOAA Interactive Multisensor Snow and Ice Mapping System and MODIS data, and the snow water equivalent was evaluated using CMC, Global Snow Monitoring for Climate Research (GlobSnow), and Hydro-Québec products. The modeled fractional snow cover agreed well with the observational estimates. The albedo of snow-covered areas showed a bias of up to −0.15 in boreal forest regions, owing to neglect of subgrid-scale lakes in the simulation. In June, conversely, there was a positive albedo bias in the remaining snow-covered areas, likely caused by neglect of impurities in the snow. The validation of the snow water equivalent was complicated by the fact that the three observation-based datasets differed widely. Also, the downward adjustment of the forcing precipitation clearly resulted in a low snow bias in some regions. However, where the density of the observations was high, the CLASS snow model was deemed to have performed well. Sensitivity tests confirmed the satisfactory behavior of the current parameterizations of snow thermal conductivity, snow albedo refreshment threshold, and limiting snow depth and underlined the importance of snow interception by vegetation. Overall, the study demonstrated the necessity of using a wide variety of observation-based datasets for model validation.


2015 ◽  
Vol 28 (20) ◽  
pp. 8037-8051 ◽  
Author(s):  
L. R. Mudryk ◽  
C. Derksen ◽  
P. J. Kushner ◽  
R. Brown

Abstract Five, daily, gridded, Northern Hemisphere snow water equivalent (SWE) datasets are analyzed over the 1981–2010 period in order to quantify the spatial and temporal consistency of satellite retrievals, land surface assimilation systems, physical snow models, and reanalyses. While the climatologies of total Northern Hemisphere snow water mass (SWM) vary among the datasets by as much as 50%, their interannual variability and daily anomalies are comparable, showing moderate to good temporal correlations (between 0.60 and 0.85) on both interannual and intraseasonal time scales. Wintertime trends of total Northern Hemisphere SWM are consistently negative over the 1981–2010 period among the five datasets but vary in strength by a factor of 2–3. Examining spatial patterns of SWE indicates that the datasets are most consistent with one another over boreal forest regions compared to Arctic and alpine regions. Additionally, the datasets derived using relatively recent reanalyses are strongly correlated with one another and show better correlations with the satellite product [the European Space Agency (ESA)’s Global Snow Monitoring for Climate Research (GlobSnow)] than do those using older reanalyses. Finally, a comparison of eight reanalysis datasets over the 2001–10 period shows that land surface model differences control the majority of spread in the climatological value of SWM, while meteorological forcing differences control the majority of the spread in temporal correlations of SWM anomalies.


Sign in / Sign up

Export Citation Format

Share Document