Snow as a source of predictability in seasonal forecasts?

Author(s):  
Danny Risto ◽  
Bodo Ahrens ◽  
Kristina Fröhlich

<p>Besides the ocean, the land surface is a crucial component for predictability at (sub-)seasonal time scales. While the prediction of 2m temperature up to several months is possible for some maritime regions, continental regions lack predictive skill. Improved representation of the land surface in seasonal forecasting systems could help to close this gap. Snow cover fraction and snow water equivalent (SWE) are essential properties of the land surface. A snow-covered land surface leads to local temperature decreases in the overlying air (snow-albedo effect and high emissivity) and melting snow cools the surface air and contributes to soil moisture. First, we analyse the dynamical relationships between snow, 2m temperature and sensible/latent heat fluxes in reanalysis data in the northern hemisphere. Then we investigate whether these relationships are also present in operational seasonal forecast models provided by Copernicus Climate Change Service (C3S). First results show that the quality of the 2m temperature forecast over continental regions drops sharply after the first forecasted month, whereas anomalies in snow water equivalent can be predicted up to several months. Forecasted anomalies in sensible and latent heat fluxes of continental land surfaces show predictive skill during winter and spring only locally in some places, which reduces potential interactions between snow/land surface and the atmosphere in the models. The goal of this ongoing work is to assess the importance of snow initialisation and parameterisation for seasonal forecasting.</p>

2016 ◽  
Vol 17 (5) ◽  
pp. 1467-1488 ◽  
Author(s):  
Reinel Sospedra-Alfonso ◽  
Lawrence Mudryk ◽  
William Merryfield ◽  
Chris Derksen

Abstract The ability of the Canadian Seasonal to Interannual Prediction System (CanSIPS) to provide realistic forecast initial conditions for snow cover is assessed using in situ measurements and gridded snow analyses. Forecast initial conditions for snow in CanCM3 and CanCM4 employed by CanSIPS are determined by the response of the Canadian Land Surface Scheme (CLASS) used in both models to forcing from model atmospheric fields constrained by assimilation of 6-hourly reanalysis data. These snow initial conditions are found to be representative of the daily climatology of snow water equivalent (SWE) as well as interannual variations in maximum SWE and the timing of snow onset and snowmelt observed at eight in situ measurement sites located across Canada. The level of this agreement is similar to that of three independent gridded snow analyses (MERRA, the European Space Agency’s GlobSnow, and an offline forced version of CLASS). Total Northern Hemisphere snow mass generated by the CanSIPS initialization procedure is larger for both models (especially CanCM3) than in MERRA, mostly because of higher SWE in regions of common snow cover. Globally, the interannual variability of initial SWE is found to correlate highly with that of MERRA in locations with appreciable snow. These initial values are compared to SWE in freely running CanCM3 and CanCM4 simulations produced without data assimilation of atmospheric fields. Differences in climatological SWE relative to MERRA are similar in the freely running and assimilating CanCM3 and CanCM4 simulations, suggesting that inherent model biases are a major contributor to biases in CanSIPS snow initial conditions.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Satoshi Watanabe ◽  
Shunji Kotsuki ◽  
Shinjiro Kanae ◽  
Kenji Tanaka ◽  
Atsushi Higuchi

Abstract This study highlights the severity of the low snow water equivalent (SWE) and remarkably high temperatures in 2020 in Japan, where reductions in SWE have significant impacts on society due to its importance for water resources. A continuous 60-year land surface simulation forced by reanalysis data revealed that the low SWE in many river basins in the southern snowy region of mainland Japan are the most severe on record. The impact of the remarkably high temperatures in 2020 on the low SWE was investigated by considering the relationships among SWE, temperature, and precipitation. The main difference between the 2020 case and prior periods of low SWE is the record-breaking high temperatures. Despite the fact that SWE was the lowest in 2020, precipitation was much higher than that in 2019, which was one of the lowest SWE on record pre-2020. The results indicate the possibility that even more serious low-SWE periods will be caused if lower precipitation and higher temperatures occur simultaneously.


2007 ◽  
Vol 8 (1) ◽  
pp. 68-87 ◽  
Author(s):  
Margaret A. LeMone ◽  
Fei Chen ◽  
Joseph G. Alfieri ◽  
Mukul Tewari ◽  
Bart Geerts ◽  
...  

Abstract Analyses of daytime fair-weather aircraft and surface-flux tower data from the May–June 2002 International H2O Project (IHOP_2002) and the April–May 1997 Cooperative Atmosphere Surface Exchange Study (CASES-97) are used to document the role of vegetation, soil moisture, and terrain in determining the horizontal variability of latent heat LE and sensible heat H along a 46-km flight track in southeast Kansas. Combining the two field experiments clearly reveals the strong influence of vegetation cover, with H maxima over sparse/dormant vegetation, and H minima over green vegetation; and, to a lesser extent, LE maxima over green vegetation, and LE minima over sparse/dormant vegetation. If the small number of cases is producing the correct trend, other effects of vegetation and the impact of soil moisture emerge through examining the slope ΔxyLE/ΔxyH for the best-fit straight line for plots of time-averaged LE as a function of time-averaged H over the area. Based on the surface energy balance, H + LE = Rnet − Gsfc, where Rnet is the net radiation and Gsfc is the flux into the soil; Rnet − Gsfc ∼ constant over the area implies an approximately −1 slope. Right after rainfall, H and LE vary too little horizontally to define a slope. After sufficient drying to produce enough horizontal variation to define a slope, a steep (∼−2) slope emerges. The slope becomes shallower and better defined with time as H and LE horizontal variability increases. Similarly, the slope becomes more negative with moister soils. In addition, the slope can change with time of day due to phase differences in H and LE. These trends are based on land surface model (LSM) runs and observations collected under nearly clear skies; the vegetation is unstressed for the days examined. LSM runs suggest terrain may also play a role, but observational support is weak.


2021 ◽  
Vol 22 (10) ◽  
pp. 2547-2564
Author(s):  
Georg Lackner ◽  
Daniel F. Nadeau ◽  
Florent Domine ◽  
Annie-Claude Parent ◽  
Gonzalo Leonardini ◽  
...  

AbstractRising temperatures in the southern Arctic region are leading to shrub expansion and permafrost degradation. The objective of this study is to analyze the surface energy budget (SEB) of a subarctic shrub tundra site that is subject to these changes, on the east coast of Hudson Bay in eastern Canada. We focus on the turbulent heat fluxes, as they have been poorly quantified in this region. This study is based on data collected by a flux tower using the eddy covariance approach and focused on snow-free periods. Furthermore, we compare our results with those from six Fluxnet sites in the Arctic region and analyze the performance of two land surface models, SVS and ISBA, in simulating soil moisture and turbulent heat fluxes. We found that 23% of the net radiation was converted into latent heat flux at our site, 35% was used for sensible heat flux, and about 15% for ground heat flux. These results were surprising considering our site was by far the wettest site among those studied, and most of the net radiation at the other Arctic sites was consumed by the latent heat flux. We attribute this behavior to the high hydraulic conductivity of the soil (littoral and intertidal sediments), typical of what is found in the coastal regions of the eastern Canadian Arctic. Land surface models overestimated the surface water content of those soils but were able to accurately simulate the turbulent heat flux, particularly the sensible heat flux and, to a lesser extent, the latent heat flux.


2013 ◽  
Vol 17 (7) ◽  
pp. 2781-2796 ◽  
Author(s):  
S. Shukla ◽  
J. Sheffield ◽  
E. F. Wood ◽  
D. P. Lettenmaier

Abstract. Global seasonal hydrologic prediction is crucial to mitigating the impacts of droughts and floods, especially in the developing world. Hydrologic predictability at seasonal lead times (i.e., 1–6 months) comes from knowledge of initial hydrologic conditions (IHCs) and seasonal climate forecast skill (FS). In this study we quantify the contributions of two primary components of IHCs – soil moisture and snow water content – and FS (of precipitation and temperature) to seasonal hydrologic predictability globally on a relative basis throughout the year. We do so by conducting two model-based experiments using the variable infiltration capacity (VIC) macroscale hydrology model, one based on ensemble streamflow prediction (ESP) and another based on Reverse-ESP (Rev-ESP), both for a 47 yr re-forecast period (1961–2007). We compare cumulative runoff (CR), soil moisture (SM) and snow water equivalent (SWE) forecasts from each experiment with a VIC model-based reference data set (generated using observed atmospheric forcings) and estimate the ratio of root mean square error (RMSE) of both experiments for each forecast initialization date and lead time, to determine the relative contribution of IHCs and FS to the seasonal hydrologic predictability. We find that in general, the contributions of IHCs to seasonal hydrologic predictability is highest in the arid and snow-dominated climate (high latitude) regions of the Northern Hemisphere during forecast periods starting on 1 January and 1 October. In mid-latitude regions, such as the Western US, the influence of IHCs is greatest during the forecast period starting on 1 April. In the arid and warm temperate dry winter regions of the Southern Hemisphere, the IHCs dominate during forecast periods starting on 1 April and 1 July. In equatorial humid and monsoonal climate regions, the contribution of FS is generally higher than IHCs through most of the year. Based on our findings, we argue that despite the limited FS (mainly for precipitation) better estimates of the IHCs could lead to improvement in the current level of seasonal hydrologic forecast skill over many regions of the globe at least during some parts of the year.


2021 ◽  
Author(s):  
Vincent Vionnet ◽  
Colleen Mortimer ◽  
Mike Brady ◽  
Louise Arnal ◽  
Ross Brown

Abstract. In situ measurements of snow water equivalent (SWE) – the depth of water that would be produced if all the snow melted – are used in many applications including water management, flood forecasting, climate monitoring, and evaluation of hydrological and land surface models. The Canadian historical SWE dataset (CanSWE) combines manual and automated pan-Canadian SWE observations collected by national, provincial and territorial agencies as well as hydropower companies. Snow depth and derived bulk snow density are also included when available. This new dataset supersedes the previous Canadian Historical Snow Survey (CHSSD) dataset published by Brown et al. (2019), and this paper describes the efforts made to correct metadata, remove duplicate observations, and quality control records. The CanSWE dataset was compiled from 15 different sources and includes SWE information for all provinces and territories that measure SWE. Data were updated to July 2020 and new historical data from the Government of Northwest Territories, Government of Newfoundland and Labrador, Saskatchewan Water Security Agency, and Hydro Quebec were included. CanSWE includes over one million SWE measurements from 2607 different locations across Canada over the period 1928–2020. It is publicly available at https://doi.org/10.5281/zenodo.4734372 (Vionnet et al., 2021).


2015 ◽  
Vol 8 (12) ◽  
pp. 10783-10841
Author(s):  
A. Loew ◽  
J. Peng ◽  
M. Borsche

Abstract. Surface water and energy fluxes are essential components of the Earth system. Surface latent heat fluxes provide major energy input to the atmosphere. Despite the importance of these fluxes, state-of-the-art datasets of surface energy and water fluxes largely differ. The present paper introduces a new framework for the estimation of surface energy and water fluxes at the land surface, which allows for temporally and spatially high resolved flux estimates at the global scale (HOLAPS). The framework maximizes the usage of existing long-term satellite data records and ensures internally consistent estimates of the surface radiation and water fluxes. The manuscript introduces the technical details of the developed framework and provides results of a comprehensive sensitivity and evaluation study. Overall the results indicate very good agreement with in situ observations when compared against 49 FLUXNET stations worldwide. Largest uncertainties of latent heat flux and net radiation were found to result from uncertainties in the global solar radiation flux obtained from satellite data products.


2014 ◽  
Vol 8 (2) ◽  
pp. 471-485 ◽  
Author(s):  
S. Jörg-Hess ◽  
F. Fundel ◽  
T. Jonas ◽  
M. Zappa

Abstract. Gridded snow water equivalent (SWE) data sets are valuable for estimating the snow water resources and verify different model systems, e.g. hydrological, land surface or atmospheric models. However, changing data availability represents a considerable challenge when trying to derive consistent time series for SWE products. In an attempt to improve the product consistency, we first evaluated the differences between two climatologies of SWE grids that were calculated on the basis of data from 110 and 203 stations, respectively. The "shorter" climatology (2001–2009) was produced using 203 stations (map203) and the "longer" one (1971–2009) 110 stations (map110). Relative to map203, map110 underestimated SWE, especially at higher elevations and at the end of the winter season. We tested the potential of quantile mapping to compensate for mapping errors in map110 relative to map203. During a 9 yr calibration period from 2001 to 2009, for which both map203 and map110 were available, the method could successfully refine the spatial and temporal SWE representation in map110 by making seasonal, regional and altitude-related distinctions. Expanding the calibration to the full 39 yr showed that the general underestimation of map110 with respect to map203 could be removed for the whole winter. The calibrated SWE maps fitted the reference (map203) well when averaged over regions and time periods, where the mean error is approximately zero. However, deviations between the calibrated maps and map203 were observed at single grid cells and years. When we looked at three different regions in more detail, we found that the calibration had the largest effect in the region with the highest proportion of catchment areas above 2000 m a.s.l. and that the general underestimation of map110 compared to map203 could be removed for the entire snow season. The added value of the calibrated SWE climatology is illustrated with practical examples: the verification of a hydrological model, the estimation of snow resource anomalies and the predictability of runoff through SWE.


2010 ◽  
Vol 9 (4) ◽  
pp. 984-1001 ◽  
Author(s):  
Jörg Schwinger ◽  
Stefan J. Kollet ◽  
Charlotte M. Hoppe ◽  
Hendrik Elbern

2006 ◽  
Vol 63 (3) ◽  
pp. 998-1012 ◽  
Author(s):  
Maike Ahlgrimm ◽  
David A. Randall

Abstract The mixed-layer approach to modeling the planetary boundary layer (PBL) is particularly well suited to inversion-topped PBLs, such as the stratocumulus-topped boundary layer found off the west coast of America in the subtropical Pacific Ocean at northern and southern latitudes. However, a strong temperature inversion near 850 hPa (the trade wind inversion) is not confined to the stratocumulus regimes, but has been observed over most parts of the subtropical–tropical Pacific Ocean. In this paper, the authors test the ability of a simple bulk boundary layer model (BBLM) to diagnose entrainment velocity, cumulus mass flux, and surface latent heat flux from monthly mean reanalysis data. The PBL depth is estimated from Geoscience Laser Altimeter System data. The model is based on the conservation equations for mass, total water mixing ratio, and moist static energy. The BBLM diagnoses entrainment velocities between 1 and 8 mm s−1 in the stratocumulus and trade wind regions, with increasing rates toward the west. Large cumulus mass fluxes (1.3–2 cm s−1) mark the ITCZ and South Pacific convergence zone. Unreasonably large surface latent heat fluxes are diagnosed in regions where the vertical resolution of both model and input data are insufficient to represent the sharp gradients of moist conservable variables and winds across the PBL top. The results demonstrate that the potential exists to extract useful information about the large-scale structure of PBL physical processes by combining available observations with simple models.


Sign in / Sign up

Export Citation Format

Share Document