scholarly journals Performance Evaluation of a Full-Duplex Relaying-Enabled Satellite Sensor Network

Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5453 ◽  
Author(s):  
Xigang Xia ◽  
Bo Yang ◽  
Zhiyu Liu ◽  
Kang An ◽  
Kefeng Guo

This paper investigates the performance of a full-duplex (FD) relaying-enabled satellite sensor network under residual loop interference, where the satellite uplink and the downlink transmissions simultaneously occur over the same frequency band. Specifically, the closed-form expressions for the outage probability and ergodic capacity of the FD relaying satellite sensor network are derived by considering residual loop interference, channel statistical property, propagation loss, geometric satellite antenna pattern, and terminal elevation angle. Simulation results show the achieved performance gains of a full-duplex relaying satellite sensor network over traditional half-duplex relaying, and highlight the impact of key system parameters on the performance of the considered FD relaying satellite sensor network.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Rongyi Hu ◽  
Chunjing Hu ◽  
Jiamo Jiang ◽  
Xinqian Xie ◽  
Lei Song

This paper investigates the outage probability and ergodic capacity performances for full-duplex mode in two-way amplify-and-forward relay channels. The two-way relay channels which consist of two source nodes and a single relay node working in full-duplex mode, are assumed as independent and identically distributed as Rayleigh fading. The self-interference or loop interference of the relay is unavoidably investigated for full-duplex mode. And the close-form expressions for the outage probability and ergodic capacity of full-duplex mode are derived, considering both loop interference and the coefficients of two-way relay amplify-and-forward channels. To further facilitate the performance of full-duplex mode, the half-duplex modes over different transmission time slots are analyzed. Simulation results point out the effect of loop interference on outage probability and ergodic capacity of two-way amplify-and-forward relay channels with full-duplex mode and show that full-duplex mode can achieve better performance in terms of capacity and even outperform half-duplex modes in the presence of loop interference.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1293 ◽  
Author(s):  
Chi-Bao Le ◽  
Dinh-Thuan Do ◽  
Miroslav Voznak

In this paper, a cooperative non-orthogonal multiple access (NOMA) system is studied for the Internet-of-Things (IoT) in which a master node intends to serve multiple client nodes. The adaptive transmission strategy is proposed at the relay node, i.e., the relay can be half-duplex (HD) and/or full duplex (FD). In practical terms, numerous low-cost devices are deployed in such IoT systems and it exhibits degraded performance due to hardware imperfections. In particular, the effects of hardware impairments in the NOMA users are investigated. Specifically, the closed-form expressions are derived for the outage probability. Moreover, the ergodic capacity is also analysed. This study also comparatively analyzes the orthogonal multiple access (OMA) and NOMA with HD and/or FD relaying. The numerical results are corroborated through Monte Carlo simulations.


2021 ◽  
Author(s):  
Binod Prasad ◽  
Gopal Chandra Das ◽  
Srinivas Nallagonda ◽  
Seemanti Saha ◽  
Abhijit Bhowmick

Abstract The performance of a relay based Half-Duplex (HD) and Full-Duplex (FD) cooperative cognitive radio (CR) network with a RF energy harvesting (EH) is studied in this paper. Co-operative environment includes a network with multiple primary users (PUs), and CRs. The relay node is considered as an EH node which harvests energy (HE) from RF signal (RFS) of source and loop-back interference. The network performance is studied for instantaneous transmission and delay constraint transmission for decode and forward (DF) relaying protocol. The performance is investigated under a relay energy outage constraint and the expression of throughput is redesigned. Expressions of energy outage, data outage and throughput for HD and FD are developed. The impact of several parameters such as transmitting SNR, fractional harvesting time parameter, fractional transmission time parameter, and loop-back interference on the system throughput has been investigated.


2021 ◽  
Vol 13 (15) ◽  
pp. 3014
Author(s):  
Feng Wang ◽  
Dongkai Yang ◽  
Guodong Zhang ◽  
Jin Xing ◽  
Bo Zhang ◽  
...  

Sea surface height can be measured with the delay between reflected and direct global navigation satellite system (GNSS) signals. The arrival time of a feature point, such as the waveform peak, the peak of the derivative waveform, and the fraction of the peak waveform is not the true arrival time of the specular signal; there is a bias between them. This paper aims to analyze and calibrate the bias to improve the accuracy of sea surface height measured by using the reflected signals of GPS CA, Galileo E1b and BeiDou B1I. First, the influencing factors of the delay bias, including the elevation angle, receiver height, wind speed, pseudorandom noise (PRN) code of GPS CA, Galileo E1b and BeiDou B1I, and the down-looking antenna pattern are explored based on the Z-V model. The results show that (1) with increasing elevation angle, receiver height, and wind speed, the delay bias tends to decrease; (2) the impact of the PRN code is uncoupled from the elevation angle, receiver height, and wind speed, so the delay biases of Galileo E1b and BeiDou B1I can be derived from that of GPS CA by multiplication by the constants 0.32 and 0.54, respectively; and (3) the influence of the down-looking antenna pattern on the delay bias is lower than 1 m, which is less than that of other factors; hence, the effect of the down-looking antenna pattern is ignored in this paper. Second, an analytical model and a neural network are proposed based on the assumption that the influence of all factors on the delay bias are uncoupled and coupled, respectively, to calibrate the delay bias. The results of the simulation and experiment show that compared to the meter-level bias before the calibration, the calibrated bias decreases the decimeter level. Based on the fact that the specular points of several satellites are visible to the down-looking antenna, the multi-observation method is proposed to calibrate the bias for the case of unknown wind speed, and the same calibration results can be obtained when the proper combination of satellites is selected.


IEEE Access ◽  
2017 ◽  
Vol 5 ◽  
pp. 7737-7745 ◽  
Author(s):  
Yurong Wang ◽  
Kui Xu ◽  
Aijun Liu ◽  
Xiaochen Xia
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
E. Aidman ◽  
M. Balin ◽  
K. Johnson ◽  
S. Jackson ◽  
G. M. Paech ◽  
...  

AbstractCaffeine is widely used to promote alertness and cognitive performance under challenging conditions, such as sleep loss. Non-digestive modes of delivery typically reduce variability of its effect. In a placebo-controlled, 50-h total sleep deprivation (TSD) protocol we administered four 200 mg doses of caffeine-infused chewing-gum during night-time circadian trough and monitored participants' drowsiness during task performance with infra-red oculography. In addition to the expected reduction of sleepiness, caffeine was found to disrupt its degrading impact on performance errors in tasks ranging from standard cognitive tests to simulated driving. Real-time drowsiness data showed that caffeine produced only a modest reduction in sleepiness (compared to our placebo group) but substantial performance gains in vigilance and procedural decisions, that were largely independent of the actual alertness dynamics achieved. The magnitude of this disrupting effect was greater for more complex cognitive tasks.


2011 ◽  
Vol 383-390 ◽  
pp. 6840-6845 ◽  
Author(s):  
Yong Hong Gu ◽  
Wei Huang ◽  
Qiao Li Yang

To transmit and receive data over any network successfully, a protocol is required to manage the flow. High-level Data Link Control (HDLC) protocol is defined in Layer 2 of OSI model and is one of the most commonly used Layer 2 protocol. HDLC supports both full-duplex and half-duplex data transfer. In addition, it offers error control and flow control. Currently on the market there are many dedicated HDLC chips, but these chips are neither of control complexity nor of limited number of channels. This paper presents a new method for implementing a multi-channel HDLC protocol controller using Altera FPGA and VHDL as the target technology. Implementing a multi-channel HDLC protocol controller in FPGA offers the flexibility, upgradability and customization benefits of programmable logic and also reduces the total cost of every project which involves HDLC protocol controllers.


Sign in / Sign up

Export Citation Format

Share Document