scholarly journals An Efficient Interface for the Integration of IoT Devices with Smart Grids

Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2849
Author(s):  
Felipe Viel ◽  
Luis Augusto Silva ◽  
Valderi Reis Quietinho Leithardt ◽  
Juan Francisco De Paz Santana ◽  
Raimundo Celeste Ghizoni Teive ◽  
...  

The evolution of computing devices and ubiquitous computing has led to the development of the Internet of Things (IoT). Smart Grids (SGs) stand out among the many applications of IoT and comprise several embedded intelligent technologies to improve the reliability and the safety of power grids. SGs use communication protocols for information exchange, such as the Open Smart Grid Protocol (OSGP). However, OSGP does not support the integration with devices compliant with the Constrained Application Protocol (CoAP), a communication protocol used in conventional IoT systems. In this sense, this article presents an efficient software interface that provides integration between OSGP and CoAP. The results obtained demonstrate the effectiveness of the proposed solution, which presents low communication overhead and enables the integration between IoT and SG systems.

Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1339 ◽  
Author(s):  
Hasan Islam ◽  
Dmitrij Lagutin ◽  
Antti Ylä-Jääski ◽  
Nikos Fotiou ◽  
Andrei Gurtov

The Constrained Application Protocol (CoAP) is a specialized web transfer protocol which is intended to be used for constrained networks and devices. CoAP and its extensions (e.g., CoAP observe and group communication) provide the potential for developing novel applications in the Internet-of-Things (IoT). However, a full-fledged CoAP-based application may require significant computing capability, power, and storage capacity in IoT devices. To address these challenges, we present the design, implementation, and experimentation with the CoAP handler which provides transparent CoAP services through the ICN core network. In addition, we demonstrate how the CoAP traffic over an ICN network can unleash the full potential of the CoAP, shifting both overhead and complexity from the (constrained) endpoints to the ICN network. The experiments prove that the CoAP Handler helps to decrease the required computation complexity, communication overhead, and state management of the CoAP server.


2020 ◽  
Vol 2020 (3) ◽  
pp. 276-1-276-15
Author(s):  
Franziska Schwarz ◽  
Klaus Schwarz ◽  
Reiner Creutzburg

Since its invention, the Internet has changed the world, but above all, it has connected people. With the advent of the Internet of Things, the Internet connects things today much more than people do. A large part of the Internet of Things consists of IoT controlled Smart Home devices. The Internet of Things and the Smart Home have become an increasingly important topic in recent years. The growing popularity of Smart Home devices such as Smart TVs, Smart Door Locks, Smart Light Bulbs, and others is causing a rapid increase in vulnerable areas. In the future, many IoT devices could be just as many targets. The many new and inexperienced manufacturers and the absence of established uniform standards also contribute to the precarious situation. Therefore, new methods are needed to sensitize and detect these threats. In this paper, different existing approaches like those of the National Institute of Standards and Technology (NIST) and the Open Web Application Security Project (OWASP) are combined with concepts of this work like the Smart Home Device Life Cycle. In the context of this paper, a universal 31-page question-based test procedure is developed that can be applied to any Smart Home device. Based on this new, innovative security checklist, the communication between device, app, and the manufacturer's servers, as well as the firmware of IoT devices, can be analyzed and documented in detail. In the course of this paper, also a handout in the abbreviated form will be created, which serves the same purpose.


2020 ◽  
Vol 2 (3) ◽  
pp. 147-163 ◽  
Author(s):  
Samuel J. Moore ◽  
Chris D. Nugent ◽  
Shuai Zhang ◽  
Ian Cleland

Abstract The Internet of Things (IoT) is rapidly changing the way in which we engage with technology on a daily basis. The IoT paradigm enables low-resource devices to intercommunicate in a fully flexible and pervasive manner, and the data from these devices is used for decision-making in critical applications such as; traffic infrastructure, health-care and home security, to name but a few. Due to the scarce resources available in these IoT devices, being able to quantify the reliability of them is a critical function. This report presents a detailed evolution of the area of reliability measurement, followed by an in-depth review of the state-of-the-art for quantification of reliability in the IoT, revealing the many challenges associated with this task. From this in-depth review, a set of key research directions for IoT reliability is determined. Despite the critical nature of the research area, at this current moment, this study is the first detailed review available in the area of assessing IoT reliability.


Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 70
Author(s):  
Axelle Hue ◽  
Gaurav Sharma ◽  
Jean-Michel Dricot

The growing expectations for ubiquitous sensing have led to the integration of countless embedded sensors, actuators, and RFIDs in our surroundings. Combined with rapid developments in high-speed wireless networks, these resource-constrained devices are paving the road for the Internet-of-Things paradigm, a computing model aiming to bring together millions of heterogeneous and pervasive elements. However, it is commonly accepted that the Privacy consideration remains one of its main challenges, a notion that does not only encompasses malicious individuals but can also be extended to honest-but-curious third-parties. In this paper, we study the design of a privacy-enhanced communication protocol for lightweight IoT devices. Applying the proposed approach to MQTT, a highly popular lightweight publish/subscribe communication protocol prevents no valuable information from being extracted from the messages flowing through the broker. In addition, it also prevents partners re-identification. Starting from a privacy-ideal, but unpractical, exact transposition of the Oblivious Transfer (OT) technology to MQTT, this paper follows an iterative process where each previous model’s drawbacks are appropriately mitigated all the while trying to preserve acceptable privacy levels. Our work provides resistance to statistical analysis attacks and dynamically supports new client participation. Additionally the whole proposal is based on the existence of a non-communicating 3rd party during pre-development. This particular contribution reaches a proof-of-concept stage through implementation, and achieves its goals thanks to OT’s indistinguishability property as well as hash-based topic obfuscations.


2021 ◽  
Vol 2021 ◽  
pp. 1-24
Author(s):  
Tidiane Sylla ◽  
Mohamed Aymen Chalouf ◽  
Francine Krief ◽  
Karim Samaké

IoT technologies facilitate the development and the improvement of pervasive computing by enabling effective context-awareness features. These features enable the IoT applications to detect the user’s situation and adapt their behavior. They also enable context-aware security and privacy, which consist in adapting security and privacy mechanisms’ deployment to the user’s situation. Research studies on context-aware security and privacy focus on security and privacy mechanisms’ implementation but do not consider the secure and trustworthy context management. In this paper, we introduce a new secure and trustworthy context management system for context-aware security and privacy in the smart city: “SETUCOM.” SETUCOM is the implementation of the DTM (Device Trust Management) module of the CASPaaS (Context-Aware Security and Privacy as a Service) architecture. It secures context information exchange by using a lightweight hybrid encryption system adapted to IoT devices and manages trust through artificial intelligence techniques such as Bayesian networks and fuzzy logic. A detailed description of the proposed system is provided, and its main performances are evaluated. The results prove SETUCOM feasibility in context-aware security and privacy for the smart city.


2020 ◽  
Vol 19 ◽  

The current IP and other networks such as Power Smart Grids are fast evolving, thus resulting in diverse connectivity methodologies. This has led to the emergence of "the Internet of Things” (IoT) methodologywhose goal is to transform the current IP and related networks to Device-to-Device (D-2-D) basis. It will seamlessly interconnect the globe via intelligent devices and sensors of varying types, this resulting in voluminousgeneration and exchange of data in excess of 20 billion Internet-connected objects and sensors (things) by 2022.The resultant structure will benefit mankind by helping us make tough decisions as well as be provisioned ofbeneficial services. In this paper, we overview both IoT enabled network architecture as well as security forassociated objects and devices. We commence with a description of a generalized IoT enabled network's security architecture as well as how the various elements constituting them interact. We then describe an approachthat allows the protection of both constrained and unconstrained IoT devices through robust encryption as wellas authentication so that both can equally leverage from the same security framework, but still maintaining lowcomputational loads, by avoiding excessive computational operations.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2674 ◽  
Author(s):  
Mike Yuliana ◽  
Wirawan ◽  
Suwadi

One solution to ensure secrecy in the Internet of Things (IoT) is cryptography. However, classical cryptographic systems require high computational complexity that is not appropriate for IoT devices with restricted computing resources, energy, and memory. Physical layer security that utilizes channel characteristics is an often used solution because it is simpler and more efficient than classical cryptographic systems. In this paper, we propose a signal strength exchange (SSE) system as an efficient key generation system and a synchronized quantization (SQ) method as a part of the SSE system that synchronizes data blocks in the quantization phase. The SQ method eliminates the signal pre-processing phase by performing a multi-bit conversion directly from the channel characteristics of the measurement results. Synchronization is carried out between the two authorized nodes to ensure sameness of the produced keys so it can eliminate the error-correcting phase. The test results at the IoT devices equipped with IEEE 802.11 radio show that SSE system is more efficient in terms of computing time and communication overhead than existing systems.


Impact ◽  
2019 ◽  
Vol 2019 (10) ◽  
pp. 61-63 ◽  
Author(s):  
Akihiro Fujii

The Internet of Things (IoT) is a term that describes a system of computing devices, digital machines, objects, animals or people that are interrelated. Each of the interrelated 'things' are given a unique identifier and the ability to transfer data over a network that does not require human-to-human or human-to-computer interaction. Examples of IoT in practice include a human with a heart monitor implant, an animal with a biochip transponder (an electronic device inserted under the skin that gives the animal a unique identification number) and a car that has built-in sensors which can alert the driver about any problems, such as when the type pressure is low. The concept of a network of devices was established as early as 1982, although the term 'Internet of Things' was almost certainly first coined by Kevin Ashton in 1999. Since then, IoT devices have become ubiquitous, certainly in some parts of the world. Although there have been significant developments in the technology associated with IoT, the concept is far from being fully realised. Indeed, the potential for the reach of IoT extends to areas which some would find surprising. Researchers at the Faculty of Science and Engineering, Hosei University in Japan, are exploring using IoT in the agricultural sector, with some specific work on the production of melons. For the advancement of IoT in agriculture, difficult and important issues are implementation of subtle activities into computers procedure. The researchers challenges are going on.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4776
Author(s):  
Seyed Mahdi Miraftabzadeh ◽  
Michela Longo ◽  
Federica Foiadelli ◽  
Marco Pasetti ◽  
Raul Igual

The recent advances in computing technologies and the increasing availability of large amounts of data in smart grids and smart cities are generating new research opportunities in the application of Machine Learning (ML) for improving the observability and efficiency of modern power grids. However, as the number and diversity of ML techniques increase, questions arise about their performance and applicability, and on the most suitable ML method depending on the specific application. Trying to answer these questions, this manuscript presents a systematic review of the state-of-the-art studies implementing ML techniques in the context of power systems, with a specific focus on the analysis of power flows, power quality, photovoltaic systems, intelligent transportation, and load forecasting. The survey investigates, for each of the selected topics, the most recent and promising ML techniques proposed by the literature, by highlighting their main characteristics and relevant results. The review revealed that, when compared to traditional approaches, ML algorithms can handle massive quantities of data with high dimensionality, by allowing the identification of hidden characteristics of (even) complex systems. In particular, even though very different techniques can be used for each application, hybrid models generally show better performances when compared to single ML-based models.


IoT ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 140-162
Author(s):  
Hung Nguyen-An ◽  
Thomas Silverston ◽  
Taku Yamazaki ◽  
Takumi Miyoshi

We now use the Internet of things (IoT) in our everyday lives. The novel IoT devices collect cyber–physical data and provide information on the environment. Hence, IoT traffic will count for a major part of Internet traffic; however, its impact on the network is still widely unknown. IoT devices are prone to cyberattacks because of constrained resources or misconfigurations. It is essential to characterize IoT traffic and identify each device to monitor the IoT network and discriminate among legitimate and anomalous IoT traffic. In this study, we deployed a smart-home testbed comprising several IoT devices to study IoT traffic. We performed extensive measurement experiments using a novel IoT traffic generator tool called IoTTGen. This tool can generate traffic from multiple devices, emulating large-scale scenarios with different devices under different network conditions. We analyzed the IoT traffic properties by computing the entropy value of traffic parameters and visually observing the traffic on behavior shape graphs. We propose a new method for identifying traffic entropy-based devices, computing the entropy values of traffic features. The method relies on machine learning to classify the traffic. The proposed method succeeded in identifying devices with a performance accuracy up to 94% and is robust with unpredictable network behavior with traffic anomalies spreading in the network.


Sign in / Sign up

Export Citation Format

Share Document