scholarly journals Angular Light, Polarization and Stokes Parameters Information in a Hybrid Image Sensor with Division of Focal Plane

Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3391
Author(s):  
Francelino Freitas Carvalho ◽  
Carlos Augusto de Moraes Cruz ◽  
Greicy Costa Marques ◽  
Kayque Martins Cruz Damasceno

Targeting 3D image reconstruction and depth sensing, a desirable feature for complementary metal oxide semiconductor (CMOS) image sensors is the ability to detect local light incident angle and the light polarization. In the last years, advances in the CMOS technologies have enabled dedicated circuits to determine these parameters in an image sensor. However, due to the great number of pixels required in a cluster to enable such functionality, implementing such features in regular CMOS imagers is still not viable. The current state-of-the-art solutions require eight pixels in a cluster to detect local light intensity, incident angle and polarization. The technique to detect local incident angle is widely exploited in the literature, and the authors have shown in previous works that it is possible to perform the job with a cluster of only four pixels. In this work, the authors explore three novelties: a mean to determine three of four Stokes parameters, the new paradigm in polarization cluster-pixel design, and the extended ability to detect both the local light angle and intensity. The features of the proposed pixel cluster are demonstrated through simulation program with integrated circuit emphasis (SPICE) of the regular Quadrature Pixel Cluster and Polarization Pixel Cluster models, the results of which are compliant with experimental results presented in the literature.

2018 ◽  
Vol 13 (2) ◽  
pp. 1-10 ◽  
Author(s):  
Francelino Freitas Carvalho ◽  
Carlos Augusto de Moraes Cruz ◽  
Greicy C. Marques ◽  
Thiago Brito Bezerra

Detecting local light incident angle is a desirable feature for CMOS image sensors for 3D image reconstruction purposes and depth sensing. Advances in the CMOS technologies in the last years have enabled integrated solutions to perform such a job. However, it is still not viable to implement such a feature in regular CMOS image sensors due to the great number of pixels in a cluster to perform incident angle detection. In this paper, a hybrid cluster with only four pixels, instead of eight pixels of previous solutions, that is able to detect both local light intensity, incident angle and Stokes parameters. The technique to detect local incident angle is widely exploited in the literature. Three novelties are explored in this work, the first is the new paradigm in polarization cluster-pixel design, the second is the extended ability of metal shielded pixels to detect both the local light angle and intensity and the third is to determine the Stokes parameters through this sensor. SPICE simulation results show that the existing Quadrature Pixel Cluster - QPC and Polarization Pixel Cluster - PPC models are in accordance with experimental results presented in the literature, and thus it was possible to demonstrate similar behavior in the new proposed pixel cluster.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1757
Author(s):  
Pankaj Bhowmik ◽  
Md Jubaer Hossain Pantho ◽  
Christophe Bobda

Cameras are widely adopted for high image quality with the rapid advancement of complementary metal-oxide-semiconductor (CMOS) image sensors while offloading vision applications’ computation to the cloud. It raises concern for time-critical applications such as autonomous driving, surveillance, and defense systems since moving pixels from the sensor’s focal plane are expensive. This paper presents a hardware architecture for smart cameras that understands the salient regions from an image frame and then performs high-level inference computation for sensor-level information creation instead of transporting raw pixels. A visual attention-oriented computational strategy helps to filter a significant amount of redundant spatiotemporal data collected at the focal plane. A computationally expensive learning model is then applied to the interesting regions of the image. The hierarchical processing in the pixels’ data path demonstrates a bottom-up architecture with massive parallelism and gives high throughput by exploiting the large bandwidth available at the image source. We prototype the model in field-programmable gate array (FPGA) and application-specific integrated circuit (ASIC) for integrating with a pixel-parallel image sensor. The experiment results show that our approach achieves significant speedup while in certain conditions exhibits up to 45% more energy efficiency with the attention-oriented processing. Although there is an area overhead for inheriting attention-oriented processing, the achieved performance based on energy consumption, latency, and memory utilization overcomes that limitation.


Author(s):  
Widianto Widianto ◽  
Lailis Syafaah ◽  
Nurhadi Nurhadi

In this paper, effects of process variations in a HCMOS (High-Speed Complementary Metal Oxide Semiconductor) IC (Integrated Circuit) are examined using a Monte Carlo SPICE (Simulation Program with Integrated Circuit Emphasis) simulation. The variations of the IC are L and VTO variations. An evaluation method is used to evaluate the effects of the variations by modeling it using a normal (Gaussian) distribution. The simulation results show that the IC may be detected as a defective IC caused by the variations based on large supply currents flow to it. 


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5461 ◽  
Author(s):  
Alain Küng ◽  
Benjamin A. Bircher ◽  
Felix Meli

Accurate traceable measurement systems often use laser interferometers for position measurements in one or more dimensions. Since interferometers provide only incremental information, they are often combined with index sensors to provide a stable reference starting point. Straightness measurements are important for machine axis correction and for systems having several degrees of freedom. In this paper, we investigate the accuracy of an optical two-dimensional (2D) index sensor, which can also be used in a straightness measurement system, based on a fiber-coupled, collimated laser beam pointing onto an image sensor. Additionally, the sensor can directly determine a 2D position over a range of a few millimeters. The device is based on a simple and low-cost complementary metal–oxide–semiconductor (CMOS) image sensor chip and provides sub-micrometer accuracy. The system is an interesting alternative to standard techniques and can even be implemented on machines for real-time corrections. This paper presents the developed sensor properties for various applications and introduces a novel error separation method for straightness measurements.


Micromachines ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 65
Author(s):  
Wenhao Zhi ◽  
Qingxiao Quan ◽  
Pingping Yu ◽  
Yanfeng Jiang

Photodiode is one of the key components in optoelectronic technology, which is used to convert optical signal into electrical ones in modern communication systems. In this paper, an avalanche photodiode (APD) is designed and fulfilled, which is compatible with Taiwan Semiconductor Manufacturing Company (TSMC) 45-nm standard complementary metal–oxide–semiconductor (CMOS) technology without any process modification. The APD based on 45 nm process is beneficial to realize a smaller and more complex monolithically integrated optoelectronic chip. The fabricated CMOS APD operates at 850 nm wavelength optical communication. Its bandwidth can be as high as 8.4 GHz with 0.56 A/W responsivity at reverse bias of 20.8 V. Its active area is designed to be 20 × 20 μm2. The Simulation Program with Integrated Circuit Emphasis (SPICE) model of the APD is also proposed and verified. The key parameters are extracted based on its electrical, optical and frequency responses by parameter fitting. The device has wide potential application for optical communication systems.


2008 ◽  
Vol 47 (7) ◽  
pp. 5390-5395 ◽  
Author(s):  
Koichi Mizobuchi ◽  
Satoru Adachi ◽  
Jose Tejada ◽  
Hiromichi Oshikubo ◽  
Nana Akahane ◽  
...  

Nanophotonics ◽  
2017 ◽  
Vol 6 (6) ◽  
pp. 1343-1352 ◽  
Author(s):  
Chuantong Cheng ◽  
Beiju Huang ◽  
Xurui Mao ◽  
Zanyun Zhang ◽  
Zan Zhang ◽  
...  

AbstractOptical receivers with potentially high operation bandwidth and low cost have received considerable interest due to rapidly growing data traffic and potential Tb/s optical interconnect requirements. Experimental realization of 65 GHz optical signal detection and 262 GHz intrinsic operation speed reveals the significance role of graphene photodetectors (PDs) in optical interconnect domains. In this work, a novel complementary metal oxide semiconductor post-backend process has been developed for integrating graphene PDs onto silicon integrated circuit chips. A prototype monolithic optoelectronic integrated optical receiver has been successfully demonstrated for the first time. Moreover, this is a firstly reported broadband optical receiver benefiting from natural broadband light absorption features of graphene material. This work is a perfect exhibition of the concept of monolithic optoelectronic integration and will pave way to monolithically integrated graphene optoelectronic devices with silicon ICs for three-dimensional optoelectronic integrated circuit chips.


Sign in / Sign up

Export Citation Format

Share Document