scholarly journals On Data-Driven Sparse Sensing and Linear Estimation of Fluid Flows

Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3752
Author(s):  
Balaji Jayaraman ◽  
S M Abdullah Al Mamun

The reconstruction of fine-scale information from sparse data measured at irregular locations is often needed in many diverse applications, including numerous instances of practical fluid dynamics observed in natural environments. This need is driven by tasks such as data assimilation or the recovery of fine-scale knowledge including models from limited data. Sparse reconstruction is inherently badly represented when formulated as a linear estimation problem. Therefore, the most successful linear estimation approaches are better represented by recovering the full state on an encoded low-dimensional basis that effectively spans the data. Commonly used low-dimensional spaces include those characterized by orthogonal Fourier and data-driven proper orthogonal decomposition (POD) modes. This article deals with the use of linear estimation methods when one encounters a non-orthogonal basis. As a representative thought example, we focus on linear estimation using a basis from shallow extreme learning machine (ELM) autoencoder networks that are easy to learn but non-orthogonal and which certainly do not parsimoniously represent the data, thus requiring numerous sensors for effective reconstruction. In this paper, we present an efficient and robust framework for sparse data-driven sensor placement and the consequent recovery of the higher-resolution field of basis vectors. The performance improvements are illustrated through examples of fluid flows with varying complexity and benchmarked against well-known POD-based sparse recovery methods.

Author(s):  
Abdullah Al-Mamun ◽  
Chen Lu ◽  
Balaji Jayaraman

Reconstruction of fine-scale information from sparse data is often needed in practical fluid dynamics where the sensors are typically sparse and yet, one may need to learn the underlying flow structures or inform predictions through assimilation into data-driven models. Given that sparse reconstruction is inherently an ill-posed problem, the most successful approaches encode the physics into an underlying sparse basis space that spans the manifold to generate well-posedness. To achieve this, one commonly uses generic orthogonal Fourier basis or data specific proper orthogonal decomposition (POD) basis to reconstruct from sparse sensor information at chosen locations. Such a reconstruction problem is well-posed as long as the sensor locations are incoherent and can sample the key physical mechanisms. The resulting inverse problem is easily solved using $l_2$ minimization or if necessary, sparsity promoting $l_1$ minimization. Given the proliferation of machine learning and the need for robust reconstruction frameworks in the face of dynamically evolving flows, we explore in this study the suitability of non-orthogonal basis obtained from Extreme Learning Machine (ELM) auto-encoders for sparse reconstruction. In particular, we assess the interplay between sensor quantity and sensor placement for a given system dimension for accurate reconstruction of canonical fluid flows in comparison to POD-based reconstruction.


Fluids ◽  
2018 ◽  
Vol 3 (4) ◽  
pp. 88 ◽  
Author(s):  
S Al Mamun ◽  
Chen Lu ◽  
Balaji Jayaraman

Reconstruction of fine-scale information from sparse data is often needed in practical fluid dynamics where the sensors are typically sparse and yet, one may need to learn the underlying flow structures or inform predictions through assimilation into data-driven models. Given that sparse reconstruction is inherently an ill-posed problem, the most successful approaches encode the physics into an underlying sparse basis space that spans the manifold to generate well-posedness. To achieve this, one commonly uses a generic orthogonal Fourier basis or a data specific proper orthogonal decomposition (POD) basis to reconstruct from sparse sensor information at chosen locations. Such a reconstruction problem is well-posed as long as the sensor locations are incoherent and can sample the key physical mechanisms. The resulting inverse problem is easily solved using l 2 minimization or if necessary, sparsity promoting l 1 minimization. Given the proliferation of machine learning and the need for robust reconstruction frameworks in the face of dynamically evolving flows, we explore in this study the suitability of non-orthogonal basis obtained from extreme learning machine (ELM) auto-encoders for sparse reconstruction. In particular, we assess the interplay between sensor quantity and sensor placement in a given system dimension for accurate reconstruction of canonical fluid flows in comparison to POD-based reconstruction.


2012 ◽  
Author(s):  
Michael Ghil ◽  
Mickael D. Chekroun ◽  
Dmitri Kondrashov ◽  
Michael K. Tippett ◽  
Andrew Robertson ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2085
Author(s):  
Xue-Bo Jin ◽  
Ruben Jonhson Robert RobertJeremiah ◽  
Ting-Li Su ◽  
Yu-Ting Bai ◽  
Jian-Lei Kong

State estimation is widely used in various automated systems, including IoT systems, unmanned systems, robots, etc. In traditional state estimation, measurement data are instantaneous and processed in real time. With modern systems’ development, sensors can obtain more and more signals and store them. Therefore, how to use these measurement big data to improve the performance of state estimation has become a hot research issue in this field. This paper reviews the development of state estimation and future development trends. First, we review the model-based state estimation methods, including the Kalman filter, such as the extended Kalman filter (EKF), unscented Kalman filter (UKF), cubature Kalman filter (CKF), etc. Particle filters and Gaussian mixture filters that can handle mixed Gaussian noise are discussed, too. These methods have high requirements for models, while it is not easy to obtain accurate system models in practice. The emergence of robust filters, the interacting multiple model (IMM), and adaptive filters are also mentioned here. Secondly, the current research status of data-driven state estimation methods is introduced based on network learning. Finally, the main research results for hybrid filters obtained in recent years are summarized and discussed, which combine model-based methods and data-driven methods. This paper is based on state estimation research results and provides a more detailed overview of model-driven, data-driven, and hybrid-driven approaches. The main algorithm of each method is provided so that beginners can have a clearer understanding. Additionally, it discusses the future development trends for researchers in state estimation.


2019 ◽  
Vol 29 (07) ◽  
pp. 1850058 ◽  
Author(s):  
Juan M. Górriz ◽  
Javier Ramírez ◽  
F. Segovia ◽  
Francisco J. Martínez ◽  
Meng-Chuan Lai ◽  
...  

Although much research has been undertaken, the spatial patterns, developmental course, and sexual dimorphism of brain structure associated with autism remains enigmatic. One of the difficulties in investigating differences between the sexes in autism is the small sample sizes of available imaging datasets with mixed sex. Thus, the majority of the investigations have involved male samples, with females somewhat overlooked. This paper deploys machine learning on partial least squares feature extraction to reveal differences in regional brain structure between individuals with autism and typically developing participants. A four-class classification problem (sex and condition) is specified, with theoretical restrictions based on the evaluation of a novel upper bound in the resubstitution estimate. These conditions were imposed on the classifier complexity and feature space dimension to assure generalizable results from the training set to test samples. Accuracies above [Formula: see text] on gray and white matter tissues estimated from voxel-based morphometry (VBM) features are obtained in a sample of equal-sized high-functioning male and female adults with and without autism ([Formula: see text], [Formula: see text]/group). The proposed learning machine revealed how autism is modulated by biological sex using a low-dimensional feature space extracted from VBM. In addition, a spatial overlap analysis on reference maps partially corroborated predictions of the “extreme male brain” theory of autism, in sexual dimorphic areas.


2020 ◽  
Author(s):  
Al-Ekram Elahee Hridoy ◽  
Mohammad Naim ◽  
Nazim Uddin Emon ◽  
Imrul Hasan Tipo ◽  
Safayet Alam ◽  
...  

AbstractOn December 31, 2019, the World Health Organization (WHO) was informed that atypical pneumonia-like cases have emerged in Wuhan City, Hubei province, China. WHO identified it as a novel coronavirus and declared a global pandemic on March 11th, 2020. At the time of writing this, the COVID-19 claimed more than 440 thousand lives worldwide and led to the global economy and social life into an abyss edge in the living memory. As of now, the confirmed cases in Bangladesh have surpassed 100 thousand and more than 1343 deaths putting startling concern on the policymakers and health professionals; thus, prediction models are necessary to forecast a possible number of cases in the future. To shed light on it, in this paper, we presented data-driven estimation methods, the Long Short-Term Memory (LSTM) networks, and Logistic Curve methods to predict the possible number of COVID-19 cases in Bangladesh for the upcoming months. The results using Logistic Curve suggests that Bangladesh has passed the inflection point on around 28-30 May 2020, a plausible end date to be on the 2nd of January 2021 and it is expected that the total number of infected people to be between 187 thousand to 193 thousand with the assumption that stringent policies are in place. The logistic curve also suggested that Bangladesh would reach peak COVID-19 cases at the end of August with more than 185 thousand total confirmed cases, and around 6000 thousand daily new cases may observe. Our findings recommend that the containment strategies should immediately implement to reduce transmission and epidemic rate of COVID-19 in upcoming days.HighlightsAccording to the Logistic curve fitting analysis, the inflection point of the COVID-19 pandemic has recently passed, which was approximately between May 28, 2020, to May 30, 2020.It is estimated that the total number of confirmed cases will be around 187-193 thousand at the end of the epidemic. We expect that the actual number will most likely to in between these two values, under the assumption that the current transmission is stable and improved stringent policies will be in place to contain the spread of COVID-19.The estimated total death toll will be around 3600-4000 at the end of the epidemic.The epidemic of COVID-19 in Bangladesh will be mostly under control by the 2nd of January 2021 if stringent measures are taken immediately.


2021 ◽  
Vol 22 ◽  
pp. 32
Author(s):  
Agathe Reille ◽  
Victor Champaney ◽  
Fatima Daim ◽  
Yves Tourbier ◽  
Nicolas Hascoet ◽  
...  

Solving mechanical problems in large structures with rich localized behaviors remains a challenging issue despite the enormous advances in numerical procedures and computational performance. In particular, these localized behaviors need for extremely fine descriptions, and this has an associated impact in the number of degrees of freedom from one side, and the decrease of the time step employed in usual explicit time integrations, whose stability scales with the size of the smallest element involved in the mesh. In the present work we propose a data-driven technique for learning the rich behavior of a local patch and integrate it into a standard coarser description at the structure level. Thus, localized behaviors impact the global structural response without needing an explicit description of that fine scale behaviors.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Mingwei Zhang ◽  
Yao Hou ◽  
Rongnian Tang ◽  
Youjun Li

In motor imagery brain computer interface system, the spatial covariance matrices of EEG signals which carried important discriminative information have been well used to improve the decoding performance of motor imagery. However, the covariance matrices often suffer from the problem of high dimensionality, which leads to a high computational cost and overfitting. These problems directly limit the application ability and work efficiency of the BCI system. To improve these problems and enhance the performance of the BCI system, in this study, we propose a novel semisupervised locality-preserving graph embedding model to learn a low-dimensional embedding. This approach enables a low-dimensional embedding to capture more discriminant information for classification by efficiently incorporating information from testing and training data into a Riemannian graph. Furthermore, we obtain an efficient classification algorithm using an extreme learning machine (ELM) classifier developed on the tangent space of a learned embedding. Experimental results show that our proposed approach achieves higher classification performance than benchmark methods on various datasets, including the BCI Competition IIa dataset and in-house BCI datasets.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1362 ◽  
Author(s):  
Lu Chen ◽  
Na Sun ◽  
Chao Zhou ◽  
Jianzhong Zhou ◽  
Yanlai Zhou ◽  
...  

Flood forecasting plays an important role in flood control and water resources management. Recently, the data-driven models with a simpler model structure and lower data requirement attract much more attentions. An extreme learning machine (ELM) method, as a typical data-driven method, with the advantages of a faster learning process and stronger generalization ability, has been taken as an effective tool for flood forecasting. However, an ELM model may suffer from local minima in some cases because of its random generation of input weights and hidden layer biases, which results in uncertainties in the flood forecasting model. Therefore, we proposed an improved ELM model for short-term flood forecasting, in which an emerging dual population-based algorithm, named backtracking search algorithm (BSA), was applied to optimize the parameters of ELM. Thus, the proposed method is called ELM-BSA. The upper Yangtze River was selected as a case study. Several performance indexes were used to evaluate the efficiency of the proposed ELM-BSA model. Then the proposed model was compared with the currently used general regression neural network (GRNN) and ELM models. Results show that the ELM-BSA can always provide better results than the GRNN and ELM models in both the training and testing periods. All these results suggest that the proposed ELM-BSA model is a promising alternative technique for flood forecasting.


Sign in / Sign up

Export Citation Format

Share Document