scholarly journals Encapsulation of Electrically Conductive Apparel Fabrics: Effects on Performance

Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4243
Author(s):  
Sophie Wilson ◽  
Raechel Laing ◽  
Eng Wui Tan ◽  
Cheryl Wilson

Electrically conductive fabrics are achieved by functionalizing with treatments such as graphene; however, these change conventional fabric properties and the treatments are typically not durable. Encapsulation may provide a solution for this, and the present work aims to address these challenges. Next-to-skin wool and cotton knit fabrics functionalized using graphene ink were encapsulated with three poly(dimethylsiloxane)-based products. Properties known to be critical in a next-to-skin application were investigated (fabric structure, moisture transfer, electrical conductivity, exposure to transient ambient conditions, wash, abrasion, and storage). Wool and cotton fabrics performed similarly. Electrical conductivity was conferred with the graphene treatment but decreased with encapsulation. Wetting and high humidity/low temperature resulted in an increase in electrical conductivity, while decreases in electrical conductivity were evident with wash, abrasion, and storage. Each encapsulant mitigated effects of exposures but these effects differed slightly. Moisture transfer changed with graphene and encapsulants. As key performance properties of the wool and cotton fabrics following treatment with graphene and an encapsulant differed from their initial state, use as a patch integrated as part of an upper body apparel item would be acceptable.

2021 ◽  
Author(s):  
Zhanyu Jia ◽  
Guangyao Li ◽  
Juan Wang ◽  
shouhua Su ◽  
Jie Wen ◽  
...  

Conductivity, self-healing and moderate mechanical properties are necessary for multifunctional hydrogels which have great potential in health-monitor sensor application. However, the combination of electrical conductivity, self-healing and good mechanical properties...


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1875
Author(s):  
Alexander Yu. Gerasimenko ◽  
Artem V. Kuksin ◽  
Yury P. Shaman ◽  
Evgeny P. Kitsyuk ◽  
Yulia O. Fedorova ◽  
...  

A technology for the formation of electrically conductive nanostructures from single-walled carbon nanotubes (SWCNT), multi-walled carbon nanotubes (MWCNT), and their hybrids with reduced graphene oxide (rGO) on Si substrate has been developed. Under the action of single pulses of laser irradiation, nanowelding of SWCNT and MWCNT nanotubes with graphene sheets was obtained. Dependences of electromagnetic wave absorption by films of short and long nanotubes with subnanometer and nanometer diameters on wavelength are calculated. It was determined from dependences that absorption maxima of various types of nanotubes are in the wavelength region of about 266 nm. It was found that contact between nanotube and graphene was formed in time up to 400 fs. Formation of networks of SWCNT/MWCNT and their hybrids with rGO at threshold energy densities of 0.3/0.5 J/cm2 is shown. With an increase in energy density above the threshold value, formation of amorphous carbon nanoinclusions on the surface of nanotubes was demonstrated. For all films, except the MWCNT film, an increase in defectiveness after laser irradiation was obtained, which is associated with appearance of C–C bonds with neighboring nanotubes or graphene sheets. CNTs played the role of bridges connecting graphene sheets. Laser-synthesized hybrid nanostructures demonstrated the highest hardness compared to pure nanotubes. Maximum hardness (52.7 GPa) was obtained for MWCNT/rGO topology. Regularity of an increase in electrical conductivity of nanostructures after laser irradiation has been established for films made of all nanomaterials. Hybrid structures of nanotubes and graphene sheets have the highest electrical conductivity compared to networks of pure nanotubes. Maximum electrical conductivity was obtained for MWCNT/rGO hybrid structure (~22.6 kS/m). Networks of nanotubes and CNT/rGO hybrids can be used to form strong electrically conductive interconnections in nanoelectronics, as well as to create components for flexible electronics and bioelectronics, including intelligent wearable devices (IWDs).


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Caroline O’Keeffe ◽  
Laura Rhian Pickard ◽  
Juan Cao ◽  
Giuliano Allegri ◽  
Ivana K. Partridge ◽  
...  

AbstractConventional carbon fibre laminates are known to be moderately electrically conductive in-plane, but have a poor through-thickness conductivity. This poses a problem for functionality aspects that are of increasing importance to industry, such as sensing, current collection, inductive/resistive heating, electromagnetic interference (EMI) shielding, etc. This restriction is of course more pronounced for non-conductive composite reinforcements such as glass, organic or natural fibres. Among various solutions to boost through-thickness electrical conductivity, tufting with hybrid micro-braided metal-carbon fibre yarns is one of the most promising. As a well-characterised method of through thickness reinforcement, tufting is easily implementable in a manufacturing environment. The hybridisation of materials in the braid promotes the resilience and integrity of yarns, while integrating metal wires opens up a wide range of multifunctional applications. Many configurations can be produced by varying braid patterns and the constituting yarns/wires. A predictive design tool is therefore necessary to select the right material configuration for the desired functional and structural performance. This paper suggests a fast and robust method for generating finite-element models of the braids, validates the prediction of micro-architecture and electrical conductivity, and demonstrates successful manufacturing of composites enhanced with braided tufts.


2008 ◽  
Vol 47-50 ◽  
pp. 714-717 ◽  
Author(s):  
Xin Lan ◽  
Jin Song Leng ◽  
Yan Ju Liu ◽  
Shan Yi Du

A new system of thermoset styrene-based shape-memory polymer (SMP) filled with carbon black (CB) is investigated. To realize the electroactive stimuli of SMP, the electrical conductivity of SMP filled with various amounts of CB is characterized. The percolation threshold of electrically conductive SMP filled with CB is about 3% (volume fraction of CB), which is much lower than many other electrically conductive polymers. When applying a voltage of 30V, the shape recovery process of SMP/CB(10 vol%) can be realized in about 100s. In addition, the thermomechanical properties are also characterized by differential scanning calorimetery (DSC).


2012 ◽  
Vol 182-183 ◽  
pp. 254-258
Author(s):  
Zhong Li Zhao ◽  
Zun Li Mo ◽  
Zhong Yu Chen

Cellulose/Ag/polyaniline conductive composite with rather excellent electrical conductivity was heterogeneously synthesized in this paper. The UV-Vis analysis indicated that homogeneous nanoAg particles deposited on the surface of cellulose in the form of globe particles. They offered some electrons to polyaniline chains. This behavior resulted to the facts that more polyaniline embedded on cellulose and an integrated electrically conductive network formed. Consequently, the high electrical conductivity of the composite was observed. The value was 3.48 S/cm, which was higher two magnitudes than the electrical conductivity of cellulose/polyaniline composite (2.15×10-2S/cm), and even was higher than the electrical conductivity of pure polyaniline (0.142 S/cm). This paper provided a facile method for the preparation of cellulose/Ag/ polyaniline composite with favorable electrical conductivity.


2006 ◽  
Vol 111 ◽  
pp. 99-102 ◽  
Author(s):  
A.A. Ahmed ◽  
Faiz Mohammad

The films of polyaniline:polyethyleneterephthalate films were prepared by polymerizing aniline soaked in polyethyleneterephthalate films of different thicknesses. The films were characterized by FTIR as well as for their electrical properties. The electrical properties of the films were observed to be of good quality as almost all the films showed a great increase in their electrical conductivity from insulator to semiconductor region after doping with hydrochloric acid. All the films in their doped state follow the Arrhenius equation for the temperature dependence of electrical conductivity from 35 to 115oC. The thermooxidative stability was studied by thermogravimetry and differential thermal analysis. The stability in terms of dc electrical conductivity retention was also studied under ambient conditions by two slightly different techniques viz. isothermal and cyclic techniques. The dc electrical conductivity of the films was found to be stable below 90oC for all the films under ambient conditions.


2004 ◽  
Vol 449-452 ◽  
pp. 233-236 ◽  
Author(s):  
Jun Suh Yu ◽  
B.S. Lee ◽  
Sung Churl Choi ◽  
Ji Hun Oh ◽  
Jae Chun Lee

Electrically conductive porous Si/SiC fiber media were prepared by infiltration of liquid silicon into porous carbon fiber preforms. The series rule of mixture for the effective electrical conductivity was applied to the disc shaped samples to estimate their silicon content, effective electrical conductivity and porosity. The electrical conductivity was estimated by assuming the disc sample as a plate of equivalent geometry, i.e., same thickness, electrode distance and volume. As the volumetric content of silicon in a sample increases from 0.026% to 0.97%, the estimated electrical conductivity increases from 0.17 S/cm to 2.09 S/cm. The porosity of the samples measured by Archimedes principle was in the range of 75~83% and 1~4% less than the one estimated by the series rule of mixture for the effective electrical conductivity.


2013 ◽  
Vol 06 (05) ◽  
pp. 1340008 ◽  
Author(s):  
DALE HITCHCOCK ◽  
YEN-LIANG LIU ◽  
YUFEI LIU ◽  
TERRY M. TRITT ◽  
JIAN HE ◽  
...  

Over the past decade the widely used p-type ( Bi 2-x Sb x) Te 3 bulk thermoelectric materials have been subject to various nanostructuring processes for higher thermoelectric performance. However, these nanostructuring processing were conducted on compositions optimized for bulk materials (x ~ 1.52–1.55). This leads to the question of whether the optimal composition for bulk materials is the same for their nanoscale counterparts. In this work we hydrothermally grew Bi 2-x Sb x Te 3 nanopowders (nominally, x = 1.46, 1.48, 1.52 and 1.55) and measured their thermoelectric properties on cold-pressed vacuum-sintered pellets (74–78% of the theoretical density) below 300 K. The measurements were conducted 18 months apart to probe the aging phenomena, with the samples stored in ambient conditions. We have found that (i) the peak of thermopower shifts to lower temperatures upon nanostructuring but it shifts back to higher temperatures upon aging; (ii) the electrical conductivity degrades by a factor of 1.5–2.3 upon aging while the temperature dependence is largely retained; and (iii) the ZT of freshly made samples is sensitive to the x value, a maximum ZT ~ 1.25(~ 0.62) at ~ 270 K (~ 255 K) was attained in the freshly made sample x = 1.55(x = 1.46), respectively; while the ZT of aged samples is significantly lowered by a factor of 2–4 but lesser x-dependent. These observations have been discussed in the context of charge buildup and compensation at grain boundaries.


1997 ◽  
Vol 481 ◽  
Author(s):  
Michael F. Bell ◽  
Georges Dénès ◽  
Zhimeng Zhu

ABSTRACTPrecipitation reactions from aqueous solutions of calcium nitrate and tin(II) fluoride result in the formation of two metastable phases, depending on the reaction conditions. Crystalline CaSn2F6 and the microcrystalline Ca1-xSnxF2 solid solution are obtained, the latter crystallizing in the cubic fluorite (CaF2) type with total Ca/Sn disorder. Both phases are fluoride ion conductors. Electrical conductivity measurements versus temperature and bulk density measurements show that both phases are far from thermodynamic equilibrium at ambient conditions, and thus are metastable. Both decompose to a mixture of SnF2 and CaF2 at high temperature. In addition, CaSn2F6 is chemically unstable in an aqueous medium, in which it looses SnF2 to give the microcrystalline Ca1-xSnxF2 solid solution.


Sign in / Sign up

Export Citation Format

Share Document