scholarly journals The Use of Low-Cost Unmanned Aerial Vehicles in the Process of Building Models for Cultural Tourism, 3D Web and Augmented/Mixed Reality Applications

Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5457 ◽  
Author(s):  
Tomasz Templin ◽  
Dariusz Popielarczyk

Unmanned Aerial Systems (UAS) are widely used in low-cost photogrammetry. Even small Unmanned Aerial Vehicles (UAV) can deliver valuable data for the inventory of inaccessible and dangerous areas or objects. The acquisition of data for 3D object modeling is a complicated, time-consuming, and cost-intensive process. It requires the use of expensive equipment and often manual work as well as professional software. These are major barriers limiting the development of modern tourist platforms that promote local attractions. Information technologies offer new opportunities for the development of the services market, including the development of smart tourism services, as an integral part of the smart city concept. 3D models are an important element of this process as they form the basis for the use of new visualization technologies, such as Virtual, Mixed, and Augmented Reality (VR/MR/AR). 3D modeling provides a new opportunity to use AR/MR technology to present information about objects, virtual tours of the historic buildings, and their promotion. It also creates an opportunity to preserve the architectural heritage and preventive maintenance of buildings. Despite the increasing use of new measuring platforms and computer modeling techniques, the implementation of 3D building models in smart tourism services is still limited, focusing more on the results of scientific projects rather than on the implementation of the new ones. The paper presents an universal methodology for the inventory of historical buildings using low-cost UAVs. It describes the most important aspects related to the process of planning UAV measurement missions and photogrammetric data acquisition. The construction of 3D models and the possibilities of their further use to build smart tourism services based on Web/AR/MR/VR technology was also presented.

Author(s):  
Y. Takahashi ◽  
H. Chikatsu

Recently, 3D measurements using small unmanned aerial vehicles (UAVs) have increased in Japan, because small type UAVs is easily available at low cost and the analysis software can be created the easily 3D models. However, small type UAVs have a problem: they have very short flight times and a small payload. In particular, as the payload of a small type UAV increases, its flight time decreases. Therefore, it is advantageous to use lightweight sensors in small type UAVs. <br><br> A mobile camera is lightweight and has many sensors such as an accelerometer, a magnetic field, and a gyroscope. Moreover, these sensors can be used simultaneously. Therefore, the authors think that the problems of small UAVs can be solved using the mobile camera. <br><br> The authors executed camera calibration using a test target for evaluating sensor values measured using a mobile camera. Consequently, the authors confirmed the same accuracy with normal camera calibration.


2019 ◽  
Vol 3 ◽  
pp. 1255
Author(s):  
Ahmad Salahuddin Mohd Harithuddin ◽  
Mohd Fazri Sedan ◽  
Syaril Azrad Md Ali ◽  
Shattri Mansor ◽  
Hamid Reza Jifroudi ◽  
...  

Unmanned aerial systems (UAS) has many advantages in the fields of SURVAILLANCE and disaster management compared to space-borne observation, manned missions and in situ methods. The reasons include cost effectiveness, operational safety, and mission efficiency. This has in turn underlined the importance of UAS technology and highlighted a growing need in a more robust and efficient unmanned aerial vehicles to serve specific needs in SURVAILLANCE and disaster management. This paper first gives an overview on the framework for SURVAILLANCE particularly in applications of border control and disaster management and lists several phases of SURVAILLANCE and service descriptions. Based on this overview and SURVAILLANCE phases descriptions, we show the areas and services in which UAS can have significant advantage over traditional methods.


Drones ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 15
Author(s):  
Moulay A. Akhloufi ◽  
Andy Couturier ◽  
Nicolás A. Castro

Wildfires represent a significant natural risk causing economic losses, human death and environmental damage. In recent years, the world has seen an increase in fire intensity and frequency. Research has been conducted towards the development of dedicated solutions for wildland fire assistance and fighting. Systems were proposed for the remote detection and tracking of fires. These systems have shown improvements in the area of efficient data collection and fire characterization within small-scale environments. However, wildland fires cover large areas making some of the proposed ground-based systems unsuitable for optimal coverage. To tackle this limitation, unmanned aerial vehicles (UAV) and unmanned aerial systems (UAS) were proposed. UAVs have proven to be useful due to their maneuverability, allowing for the implementation of remote sensing, allocation strategies and task planning. They can provide a low-cost alternative for the prevention, detection and real-time support of firefighting. In this paper, previous works related to the use of UAV in wildland fires are reviewed. Onboard sensor instruments, fire perception algorithms and coordination strategies are considered. In addition, some of the recent frameworks proposing the use of both aerial vehicles and unmanned ground vehicles (UGV) for a more efficient wildland firefighting strategy at a larger scale are presented.


Author(s):  
Elif Nur TAŞ ◽  
Zeynep PARALI ◽  
Hatice Nur ÇETİN

Technological innovations in the 􀏐ield of informatics, rapid developments in subjects such as arti􀏐icial intelligence and robotic engineering have put Unmanned Aerial Vehicles (UAV) and Armed Unmanned Aerial Vehicles (UCAV) into the battle􀏐ield of the 21st century. At this point, states whose common concerns are security have taken the path of both obtaining intelligence and developing unmanned aerial systems, whose use is rapidly increasing in the 􀏐ield of war-defense. It is known that many countries are currently working on developing and producing UAVs, beside United States of America (USA) and Israel which both have advanced unmanned aerial systems. Because states that are developing and manufacturing their own unmanned aerial systems are aware that this situation will provide a strategic advantage in terms of their military, political and economic interests. In this context, Turkey didn’t stay indifferent to the developments of unmanned aerial systems emerging in each passing day, it has made considerable momentum towards the last 􀏐ifteen years to develop national and indigenous UAV systems. Especially since mid-2010, these systems have been used ef􀏐iciently in both intra border operations and crossborder operations The main question of this article is how Turkey’s UAV/UCAV power is re􀏐lected in global politics and in this direction, world press will be scanned. In this context, this study will primarily explained by Turkey’s domestic and national development of unmanned aerial systems adventure in general terms; then Turkey’s use of these vehicles in where and for what purpose will be evaluated. Afterward it will be evaluated that how Turkey’s power of UAV/UCAV is perceived by other states in economic and military-political aspects by examining the relevant state press and publishing organizations Keywords: Turkey, Unmanned Aerial Vehicles, Unmanned Combat Aerial Vehicles, Press- Publishing Organizations.


2019 ◽  
Vol 91 (1) ◽  
pp. 69-82
Author(s):  
Brandon P. Semel ◽  
Sarah M. Karpanty ◽  
Faramalala Francette Vololonirina ◽  
Ando Nantenaina Rakotonanahary

Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2467 ◽  
Author(s):  
Hery Mwenegoha ◽  
Terry Moore ◽  
James Pinchin ◽  
Mark Jabbal

The dominant navigation system for low-cost, mass-market Unmanned Aerial Vehicles (UAVs) is based on an Inertial Navigation System (INS) coupled with a Global Navigation Satellite System (GNSS). However, problems tend to arise during periods of GNSS outage where the navigation solution degrades rapidly. Therefore, this paper details a model-based integration approach for fixed wing UAVs, using the Vehicle Dynamics Model (VDM) as the main process model aided by low-cost Micro-Electro-Mechanical Systems (MEMS) inertial sensors and GNSS measurements with moment of inertia calibration using an Unscented Kalman Filter (UKF). Results show that the position error does not exceed 14.5 m in all directions after 140 s of GNSS outage. Roll and pitch errors are bounded to 0.06 degrees and the error in yaw grows slowly to 0.65 degrees after 140 s of GNSS outage. The filter is able to estimate model parameters and even the moment of inertia terms even with significant coupling between them. Pitch and yaw moment coefficient terms present significant cross coupling while roll moment terms seem to be decorrelated from all of the other terms, whilst more dynamic manoeuvres could help to improve the overall observability of the parameters.


Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1532 ◽  
Author(s):  
Jamie Wubben ◽  
Francisco Fabra ◽  
Carlos T. Calafate ◽  
Tomasz Krzeszowski ◽  
Johann M. Marquez-Barja ◽  
...  

Over the last few years, several researchers have been developing protocols and applications in order to autonomously land unmanned aerial vehicles (UAVs). However, most of the proposed protocols rely on expensive equipment or do not satisfy the high precision needs of some UAV applications such as package retrieval and delivery or the compact landing of UAV swarms. Therefore, in this work, a solution for high precision landing based on the use of ArUco markers is presented. In the proposed solution, a UAV equipped with a low-cost camera is able to detect ArUco markers sized 56 × 56 cm from an altitude of up to 30 m. Once the marker is detected, the UAV changes its flight behavior in order to land on the exact position where the marker is located. The proposal was evaluated and validated using both the ArduSim simulation platform and real UAV flights. The results show an average offset of only 11 cm from the target position, which vastly improves the landing accuracy compared to the traditional GPS-based landing, which typically deviates from the intended target by 1 to 3 m.


2019 ◽  
Vol 11 (1) ◽  
pp. 65 ◽  
Author(s):  
Marek W. Ewertowski ◽  
Aleksandra M. Tomczyk ◽  
David J. A. Evans ◽  
David H. Roberts ◽  
Wojciech Ewertowski

This study presents the operational framework for rapid, very-high resolution mapping of glacial geomorphology, with the use of budget Unmanned Aerial Vehicles and a structure-from-motion approach. The proposed workflow comprises seven stages: (1) Preparation and selection of the appropriate platform; (2) transport; (3) preliminary on-site activities (including optional ground-control-point collection); (4) pre-flight setup and checks; (5) conducting the mission; (6) data processing; and (7) mapping and change detection. The application of the proposed framework has been illustrated by a mapping case study on the glacial foreland of Hørbyebreen, Svalbard, Norway. A consumer-grade quadcopter (DJI Phantom) was used to collect the data, while images were processed using the structure-from-motion approach. The resultant orthomosaic (1.9 cm ground sampling distance—GSD) and digital elevation model (7.9 cm GSD) were used to map the glacial-related landforms in detail. It demonstrated the applicability of the proposed framework to map and potentially monitor detailed changes in a rapidly evolving proglacial environment, using a low-cost approach. Its coverage of multiple aspects ensures that the proposed framework is universal and can be applied in a broader range of settings.


Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2144
Author(s):  
Jose Eduardo Fuentes ◽  
Francisco David Moya ◽  
Oscar Danilo Montoya

This study presents a method to estimate the solar energy potential based on 3D data taken from unmanned aerial devices. The solar energy potential on the roof of a building was estimated before the placement of solar panels using photogrammetric data analyzed in a geographic information system, and the predictions were compared with the data recorded after installation. The areas of the roofs were chosen using digital surface models and the hemispherical viewshed algorithm, considering how the solar radiation on the roof surface would be affected by the orientation of the surface with respect to the sun, the shade of trees, surrounding objects, topography, and the atmospheric conditions. The results show that the efficiency percentages of the panels and the data modeled by the proposed method from surface models are very similar to the theoretical efficiency of the panels. Radiation potential can be estimated from photogrammetric data and a 3D model in great detail and at low cost. This method allows the estimation of solar potential as well as the optimization of the location and orientation of solar panels.


Sign in / Sign up

Export Citation Format

Share Document