scholarly journals Foot-Worn Inertial Sensors Are Reliable to Assess Spatiotemporal Gait Parameters in Axial Spondyloarthritis under Single and Dual Task Walking in Axial Spondyloarthritis

Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6453
Author(s):  
Julie Soulard ◽  
Jacques Vaillant ◽  
Romain Balaguier ◽  
Athan Baillet ◽  
Philippe Gaudin ◽  
...  

The aim of this study was (1) to evaluate the relative and absolute reliability of gait parameters during walking in single- and dual-task conditions in patients with axial spondyloarthritis (axSpA), (2) to evaluate the absolute and relative reliability of dual task effects (DTE) parameters, and (3) to determine the number of trials required to ensure reliable gait assessment, in patients with axSpA. Twenty patients with axSpa performed a 10-m walk test in single- and dual-task conditions, three times for each condition. Spatiotemporal, symmetry, and DTE gait parameters were calculated from foot-worn inertial sensors. The relative reliability (intraclass correlation coefficients-ICC) and absolute reliability (standard error of measurement-SEM and minimum detectable change-MDC) were calculated for these parameters in each condition. Spatiotemporal gait parameters showed good to excellent reliability in both conditions (0.59 < ICC < 0.90). The reliability of symmetry and DTE parameters was low. ICC, SEM, and MDC were better when using the mean of the second and the third trials. Spatiotemporal gait parameters obtained from foot-worn inertial sensors assessed in patients with axSpA in single- and dual-task conditions are reliable. However, symmetry and DTE parameters seem less reliable and need to be interpreted with caution. Finally, better reliability of gait parameters was found when using the mean of the 2nd and the 3rd trials.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. Soulard ◽  
J. Vaillant ◽  
R. Balaguier ◽  
N. Vuillerme

AbstractInertial measurement units (IMUs) are increasingly popular and may be usable in clinical routine to assess gait. However, assessing their intra-session reliability is crucial and has not been tested with foot-worn sensors in healthy participants. The aim of this study was to assess the intra-session reliability of foot-worn IMUs for measuring gait parameters in healthy adults. Twenty healthy participants were enrolled in the study and performed the 10-m walk test in single- and dual-task ('carrying a full cup of water') conditions, three trials per condition. IMUs were used to assess spatiotemporal gait parameters, gait symmetry parameters (symmetry index (SI) and symmetry ratio (SR)), and dual task effects parameters. The relative and the absolute reliability were calculated for each gait parameter. Results showed that spatiotemporal gait parameters measured with foot-worn inertial sensors were reliable; symmetry gait parameters relative reliability was low, and SR showed better absolute reliability than SI; dual task effects were poorly reliable, and taking the mean of the second and the third trials was the most reliable. Foot-worn IMUs are reliable to assess spatiotemporal and symmetry ratio gait parameters but symmetry index and DTE gait parameters reliabilities were low and need to be interpreted with cautious by clinicians and researchers.


2017 ◽  
Vol 62 (6) ◽  
pp. 615-622 ◽  
Author(s):  
Katja Orlowski ◽  
Falko Eckardt ◽  
Fabian Herold ◽  
Norman Aye ◽  
Jürgen Edelmann-Nusser ◽  
...  

AbstractGait analysis is an important and useful part of the daily therapeutic routine. InvestiGAIT, an inertial sensor-based system, was developed for using in different research projects with a changing number and position of sensors and because commercial systems do not capture the motion of the upper body. The current study is designed to evaluate the reliability of InvestiGAIT consisting of four off-the-shelf inertial sensors and in-house capturing and analysis software. Besides the determination of standard gait parameters, the motion of the upper body (pelvis and spine) can be investigated. Kinematic data of 25 healthy individuals (age: 25.6±3.3 years) were collected using a test-retest design with 1 week between measurement sessions. We calculated different parameters for absolute [e.g. limits of agreement (LoA)] and relative reliability [intraclass correlation coefficients (ICC)]. Our results show excellent ICC values for most of the gait parameters. Midswing height (MH), height difference (HD) of initial contact (IC) and terminal contact (TC) and stride length (SL) are the gait parameters, which did not exhibit acceptable values representing absolute reliability. Moreover, the parameters derived from the motion of the upper body (pelvis and spine) show excellent ICC values or high correlations. Our results indicate that InvestiGAIT is suitable for reliable measurement of almost all the considered gait parameters.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6543
Author(s):  
Damien Jacobs ◽  
Leila Farid ◽  
Sabine Ferré ◽  
Kilian Herraez ◽  
Jean-Michel Gracies ◽  
...  

The continuous, accurate and reliable estimation of gait parameters as a measure of mobility is essential to assess the loss of functional capacity related to the progression of disease. Connected insoles are suitable wearable devices which allow precise, continuous, remote and passive gait assessment. The data of 25 healthy volunteers aged 20 to 77 years were analysed in the study to validate gait parameters (stride length, velocity, stance, swing, step and single support durations and cadence) measured by FeetMe® insoles against the GAITRite® mat reference. The mean values and the values of variability were calculated per subject for GAITRite® and insoles. A t-test and Levene’s test were used to compare the gait parameters for means and variances, respectively, obtained for both devices. Additionally, measures of bias, standard deviation of differences, Pearson’s correlation and intraclass correlation were analysed to explore overall agreement between the two devices. No significant differences in mean and variance between the two devices were detected. Pearson’s correlation coefficients of averaged gait estimates were higher than 0.98 and 0.8, respectively, for unipedal and bipedal gait parameters, supporting a high level of agreement between the two devices. The connected insoles are therefore a device equivalent to GAITRite® to estimate the mean and variability of gait parameters.


GeroPsych ◽  
2016 ◽  
Vol 29 (1) ◽  
pp. 29-36 ◽  
Author(s):  
Véronique Cornu ◽  
Jean-Paul Steinmetz ◽  
Carine Federspiel

Abstract. A growing body of research demonstrates an association between gait disorders, falls, and attentional capacities in older adults. The present work empirically analyzes differences in gait parameters in frail institutionalized older adults as a function of selective attention. Gait analysis under single- and dual-task conditions as well as selective attention measures were collected from a total of 33 nursing-home residents. We found that differences in selective attention performances were related to the investigated gait parameters. Poorer selective attention performances were associated with higher stride-to-stride variabilities and a slowing of gait speed under dual-task conditions. The present findings suggest a contribution of selective attention to a safe gait. Implications for gait rehabilitation programs are discussed.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3065
Author(s):  
Ernest Kwesi Ofori ◽  
Shuaijie Wang ◽  
Tanvi Bhatt

Inertial sensors (IS) enable the kinematic analysis of human motion with fewer logistical limitations than the silver standard optoelectronic motion capture (MOCAP) system. However, there are no data on the validity of IS for perturbation training and during the performance of dance. The aim of this present study was to determine the concurrent validity of IS in the analysis of kinematic data during slip and trip-like perturbations and during the performance of dance. Seven IS and the MOCAP system were simultaneously used to capture the reactive response and dance movements of fifteen healthy young participants (Age: 18–35 years). Bland Altman (BA) plots, root mean square errors (RMSE), Pearson’s correlation coefficients (R), and intraclass correlation coefficients (ICC) were used to compare kinematic variables of interest between the two systems for absolute equivalency and accuracy. Limits of agreements (LOA) of the BA plots ranged from −0.23 to 0.56 and −0.21 to 0.43 for slip and trip stability variables, respectively. The RMSE for slip and trip stabilities were from 0.11 to 0.20 and 0.11 to 0.16, respectively. For the joint mobility in dance, LOA varied from −6.98–18.54, while RMSE ranged from 1.90 to 13.06. Comparison of IS and optoelectronic MOCAP system for reactive balance and body segmental kinematics revealed that R varied from 0.59 to 0.81 and from 0.47 to 0.85 while ICC was from 0.50 to 0.72 and 0.45 to 0.84 respectively for slip–trip perturbations and dance. Results of moderate to high concurrent validity of IS and MOCAP systems. These results were consistent with results from similar studies. This suggests that IS are valid tools to quantitatively analyze reactive balance and mobility kinematics during slip–trip perturbation and the performance of dance at any location outside, including the laboratory, clinical and home settings.


2003 ◽  
Vol 83 (10) ◽  
pp. 899-906 ◽  
Author(s):  
Deborah Falla ◽  
Gwendolen Jull ◽  
Paul Dall'Alba ◽  
Alberto Rainoldi ◽  
Roberto Merletti

Abstract Background and Purpose. This study evaluated an electromyographic technique for the measurement of muscle activity of the deep cervical flexor (DCF) muscles. Electromyographic signals were detected from the DCF, sternocleidomastoid (SCM), and anterior scalene (AS) muscles during performance of the craniocervical flexion (CCF) test, which involves performing 5 stages of increasing craniocervical flexion range of motion—the anatomical action of the DCF muscles. Subjects. Ten volunteers without known pathology or impairment participated in this study. Methods. Root-mean-square (RMS) values were calculated for the DCF, SCM, and AS muscles during performance of the CCF test. Myoelectric signals were recorded from the DCF muscles using bipolar electrodes placed over the posterior oropharyngeal wall. Reliability estimates of normalized RMS values were obtained by evaluating intraclass correlation coefficients and the normalized standard error of the mean (SEM). Results. A linear relationship was evident between the amplitude of DCF muscle activity and the incremental stages of the CCF test (F=239.04, df=36, P&lt;.0001). Normalized SEMs in the range 6.7% to 10.3% were obtained for the normalized RMS values for the DCF muscles, providing evidence of reliability for these variables. Discussion and Conclusion. This approach for obtaining a direct measure of the DCF muscles, which differs from those previously used, may be useful for the examination of these muscles in future electromyographic applications.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yunru Liao ◽  
Zhenlan Yang ◽  
Zijing Li ◽  
Rui Zeng ◽  
Jing Wang ◽  
...  

Purpose: Purpose of this study is to evaluate the measuring consistency of central refraction between multispectral refraction topography (MRT) and autorefractometry.Methods: This was a descriptive cross-sectional study including subjects in Sun Yat-sen Memorial Hospital from September 1, 2020, to December 31, 2020, ages 20 to 35 years with a best corrected visual acuity of 20/20 or better. All patients underwent cycloplegia, and the refractive status was estimated with autorefractometer, experienced optometrist and MRT. We analyzed the central refraction of the autorefractometer and MRT. The repeatability and reproducibility of values measured using both devices were evaluated using intraclass correlation coefficients (ICCs).Results: A total of 145 subjects ages 20 to 35 (290 eyes) were enrolled. The mean central refraction of the autorefractometer was −4.69 ± 2.64 diopters (D) (range −9.50 to +4.75 D), while the mean central refraction of MRT was −4.49 ± 2.61 diopters (D) (range −8.79 to +5.02 D). Pearson correlation analysis revealed a high correlation between the two devices. The intraclass correlation coefficient (ICC) also showed high agreement. The intrarater and interrater ICC values of central refraction were more than 0.90 in both devices and conditions. At the same time, the mean central refraction of experienced optometrist was −4.74 ± 2.66 diopters (D) (range −9.50 to +4.75D). The intra-class correlation coefficient of central refraction measured by MRT and subjective refraction was 0.939.Conclusions: Results revealed that autorefractometry, experienced optometrist and MRT show high agreement in measuring central refraction. MRT could provide a potential objective method to assess peripheral refraction.


2016 ◽  
Vol 50 ◽  
pp. 47-52 ◽  
Author(s):  
Laurel D. Abbruzzese ◽  
Rachel Salazar ◽  
Maddie Aubuchon ◽  
Ashwini K. Rao

2018 ◽  
Vol 16 ◽  
pp. 147997311881649 ◽  
Author(s):  
Erik Frykholm ◽  
Sarah Géphine ◽  
Didier Saey ◽  
Hieronymus van Hees ◽  
Arthur Lemson ◽  
...  

The aims were to determine reliability and feasibility of measurements to assess quadriceps endurance in people with chronic obstructive pulmonary disease. Sixty participants (forced expiratory volume in one second (mean ± standard deviation) 55 ± 18% of predicted, age 67 ± 8 years) were tested in an inter-day, test–retest design. Isokinetic, isometric, and isotonic protocols were performed using a computerized dynamometer. Test–retest relative and absolute reliability was determined via intraclass correlation coefficient (ICC), coefficient of variation (CV%), and limits of agreement (LoA%). Isokinetic total work demonstrated very high relative reliability (ICC: [95% confidence interval] = 0.98 [0.94–0.99]) and the best absolute reliability (CV% (LoA%) = 6.5% (18.0%)). Isokinetic fatigue index, isometric, and isotonic measures demonstrated low-to-high relative reliability (ICC = 0.64 [0.46–0.77], 0.88 [0.76–0.94], 0.91 [0.85–0.94]), and measures of absolute reliability (CV% (LoA%)) were 20.3% (56.4%), 14.9% (40.8%), and 15.8% (43.1%). For isokinetic total work and isometric measurements, participants performed better on retest (4.8% and 10.0%, respectively). The feasibility was similar across protocols with an average time consumption of less than 7.5 minutes. In conclusion, isokinetic, isometric, and isotonic measurements of quadriceps endurance were feasible to a similar extent and presented low-to-very high relative reliability. Absolute reliability seems to favor isokinetic total work measurements.


2018 ◽  
Vol 63 (4) ◽  
pp. 453-460 ◽  
Author(s):  
Vahid Abdollah ◽  
Eric C. Parent ◽  
Michele C. Battié

Abstract Degenerated discs have shorter T2-relaxation time and lower MR signal. The location of the signal-intensity-weighted-centroid reflects the water distribution within a region-of-interest (ROI). This study compared the reliability of the location of the signal-intensity-weighted-centroid to mean signal intensity and area measurements. L4-L5 and L5-S1 discs were measured on 43 mid-sagittal T2-weighted 3T MRI images in adults with back pain. One rater analysed images twice and another once, blinded to measurements. Discs were semi-automatically segmented into a whole disc, nucleus, anterior and posterior annulus. The coordinates of the signal-intensity-weighted-centroid for all regions demonstrated excellent intraclass-correlation-coefficients for intra- (0.99–1.00) and inter-rater reliability (0.97–1.00). The standard error of measurement for the Y-coordinates of the signal-intensity-weighted-centroid for all ROIs were 0 at both levels and 0 to 2.7 mm for X-coordinates. The mean signal intensity and area for the whole disc and nucleus presented excellent intra-rater reliability with intraclass-correlation-coefficients from 0.93 to 1.00, and 0.92 to 1.00 for inter-rater reliability. The mean signal intensity and area had lower reliability for annulus ROIs, with intra-rater intraclass-correlation-coefficient from 0.5 to 0.76 and inter-rater from 0.33 to 0.58. The location of the signal-intensity-weighted-centroid is a reliable biomarker for investigating the effects of disc interventions.


Sign in / Sign up

Export Citation Format

Share Document