scholarly journals PD-Impedance Combined Control Strategy for Capture Operations Using a 3-DOF Space Manipulator with a Compliant End-Effector

Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6739
Author(s):  
Guohua Kang ◽  
Qi Zhang ◽  
Jiaqi Wu ◽  
Han Zhang

The contact force/torque between the end-effector of the space manipulator and the target spacecraft will reduce the efficiency and safety of the capture task. A capture strategy using PD-impedance combined control algorithm is proposed to achieve compliant contact between the chaser and target spacecraft. In order to absorb the impact energy, a spring-damper system is designed at the end-effector, and the corresponding dynamics model is established by Lagrange’s equation. Then a PD-impedance control algorithm based on steady-state force tracking error is proposed. Using this method, a compliant contact between the chaser and target spacecraft is realized while considering the dynamic coupling of the system. Finally, the general equation of the reference trajectory of the manipulator end-effector is derived according to the relative velocity and impact direction. The performance of the proposed capture strategy is studied by a co-simulation of MSC Adams and MATLAB Simulink in this paper. The results show that the contact plane at the end-effector of the manipulator can decelerate and detumble the target spacecraft. Besides, the contact force, relative velocity, and angular velocity all decrease to zero gradually, and the final stable state can be maintained for a prescribed time interval.

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Meng Xiao ◽  
Tie Zhang ◽  
Yanbiao Zou ◽  
Shouyan Chen

Purpose The purpose of this paper is to propose a robot constant grinding force control algorithm for the impact stage and processing stage of robotic grinding. Design/methodology/approach The robot constant grinding force control algorithm is based on a grinding model and iterative algorithm. During the impact stage, active disturbance rejection control is used to plan the robotic reference contact force, and the robot speed is adjusted according to the error between the robot’s real contact force and the robot’s reference contact force. In the processing stage, an RBF neural network is used to construct a model with the robot's position offset displacement and controlled output, and the increment of control parameters is estimated according to the RBF neural network model. The error of contact force and expected force converges gradually by iterating the control parameters online continuously. Findings The experimental results show that the normal force overshoot of the robot based on the grinding model and iterative algorithm is small, and the processing convergence speed is fast. The error between the normal force and the expected force is mostly within ±3 N. The normal force based on the force control algorithm is more stable than the normal force based on position control, and the surface roughness of the processed workpiece has also been improved, the Ra value compared with position control has been reduced by 24.2%. Originality/value As the proposed approach obtains a constant effect in the impact stage and processing stage of robot grinding and verified by the experiment, this approach can be used for robot grinding for improved machining accuracy.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1321
Author(s):  
Constanza Saka-Herrán ◽  
Enric Jané-Salas ◽  
Antoni Mari-Roig ◽  
Albert Estrugo-Devesa ◽  
José López-López

The purpose of this review was to identify and describe the causes that influence the time-intervals in the pathway of diagnosis and treatment of oral cancer and to assess its impact on prognosis and survival. The review was structured according to the recommendations of the Aarhus statement, considering original data from individual studies and systematic reviews that reported outcomes related to the patient, diagnostic and pre-treatment intervals. The patient interval is the major contributor to the total time-interval. Unawareness of signs and/or symptoms, denial and lack of knowledge about oral cancer are the major contributors to the process of seeking medical attention. The diagnostic interval is influenced by tumor factors, delays in referral due to higher number of consultations and previous treatment with different medicines or dental procedures and by professional factors such as experience and lack of knowledge related to the disease and diagnostic procedures. Patients with advanced stage disease, primary treatment with radiotherapy, treatment at an academic facility and transitions in care are associated with prolonged pre-treatment intervals. An emerging body of evidence supports the impact of prolonged pre-treatment and treatment intervals with poorer survival from oral cancer.


2021 ◽  
Author(s):  
Markku Suomalainen ◽  
Fares J. Abu-dakka ◽  
Ville Kyrki

AbstractWe present a novel method for learning from demonstration 6-D tasks that can be modeled as a sequence of linear motions and compliances. The focus of this paper is the learning of a single linear primitive, many of which can be sequenced to perform more complex tasks. The presented method learns from demonstrations how to take advantage of mechanical gradients in in-contact tasks, such as assembly, both for translations and rotations, without any prior information. The method assumes there exists a desired linear direction in 6-D which, if followed by the manipulator, leads the robot’s end-effector to the goal area shown in the demonstration, either in free space or by leveraging contact through compliance. First, demonstrations are gathered where the teacher explicitly shows the robot how the mechanical gradients can be used as guidance towards the goal. From the demonstrations, a set of directions is computed which would result in the observed motion at each timestep during a demonstration of a single primitive. By observing which direction is included in all these sets, we find a single desired direction which can reproduce the demonstrated motion. Finding the number of compliant axes and their directions in both rotation and translation is based on the assumption that in the presence of a desired direction of motion, all other observed motion is caused by the contact force of the environment, signalling the need for compliance. We evaluate the method on a KUKA LWR4+ robot with test setups imitating typical tasks where a human would use compliance to cope with positional uncertainty. Results show that the method can successfully learn and reproduce compliant motions by taking advantage of the geometry of the task, therefore reducing the need for localization accuracy.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3498
Author(s):  
Youqiang Zhang ◽  
Cheol-Su Jeong ◽  
Minhyo Kim ◽  
Sangrok Jin

This paper shows the design and modeling of an end effector with a bidirectional telescopic mechanism to allow a surgical assistant robot to hold and handle surgical instruments. It also presents a force-free control algorithm for the direct teaching of end effectors. The bidirectional telescopic mechanism can actively transmit force both upwards and downwards by staggering the wires on both sides. In order to estimate and control torque via motor current without a force/torque sensor, the gravity model and friction model of the device are derived through repeated experiments. The LuGre model is applied to the friction model, and the static and dynamic parameters are obtained using a curve fitting function and a genetic algorithm. Direct teaching control is designed using a force-free control algorithm that compensates for the estimated torque from the motor current for gravity and friction, and then converts it into a position control input. Direct teaching operation sensitivity is verified through hand-guiding experiments.


Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2398
Author(s):  
Matteo Serenari ◽  
Enrico Prosperi ◽  
Marc-Antoine Allard ◽  
Michele Paterno ◽  
Nicolas Golse ◽  
...  

Hepatic resection (HR) for hepatocellular carcinoma (HCC) may require secondary liver transplantation (SLT). However, a previous HR is supposed to worsen post-SLT outcomes. Data of patients treated by SLT between 2000 and 2018 at two tertiary referral centers were analyzed. The primary outcome of the study was to analyze the impact of HR on post-LT complications. A Comprehensive Complication Index ≥ 29.6 was chosen as cutoff. The secondary outcome was HCC-related death by means of competing-risk regression analysis. In the study period, 140 patients were included. Patients were transplanted in a median of 23 months after HR (IQR 14–41). Among all the features analyzed regarding the prior HR, only time interval between HR and SLT (time HR-SLT) was an independent predictor of severe complications after LT (OR = 0.98, p < 0.001). According to fractional polynomial regression, the probability of severe complications increased up to 15 months after HR (43%), then slowly decreased over time (OR = 0.88, p < 0.001). There was no significant association between HCC-related death and time HR-SLT at the multivariable competing risks regression model (SHR, 1.06; 95% CI: 0.69–1.62, p = 0.796). This study showed that time HR-SLT was key in predicting complications after LT, without affecting HCC-related death.


2021 ◽  
Vol 13 (11) ◽  
pp. 2103
Author(s):  
Yuchen Liu ◽  
Jia Liu ◽  
Chuanzhe Li ◽  
Fuliang Yu ◽  
Wei Wang

An attempt was made to evaluate the impact of assimilating Doppler Weather Radar (DWR) reflectivity together with Global Telecommunication System (GTS) data in the three-dimensional variational data assimilation (3DVAR) system of the Weather Research Forecast (WRF) model on rain storm prediction in Daqinghe basin of northern China. The aim of this study was to explore the potential effects of data assimilation frequency and to evaluate the outputs from different domain resolutions in improving the meso-scale NWP rainfall products. In this study, four numerical experiments (no assimilation, 1 and 6 h assimilation time interval with DWR and GTS at 1 km horizontal resolution, 6 h assimilation time interval with radar reflectivity, and GTS data at 3 km horizontal resolution) are carried out to evaluate the impact of data assimilation on prediction of convective rain storms. The results show that the assimilation of radar reflectivity and GTS data collectively enhanced the performance of the WRF-3DVAR system over the Beijing-Tianjin-Hebei region of northern China. It is indicated by the experimental results that the rapid update assimilation has a positive impact on the prediction of the location, tendency, and development of rain storms associated with the study area. In order to explore the influence of data assimilation in the outer domain on the output of the inner domain, the rainfall outputs of 3 and 1 km resolution are compared. The results show that the data assimilation in the outer domain has a positive effect on the output of the inner domain. Since the 3DVAR system is able to analyze certain small-scale and convective-scale features through the incorporation of radar observations, hourly assimilation time interval does not always significantly improve precipitation forecasts because of the inaccurate radar reflectivity observations. Therefore, before data assimilation, the validity of assimilation data should be judged as far as possible in advance, which can not only improve the prediction accuracy, but also improve the assimilation efficiency.


Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 287
Author(s):  
Byeongjin Kim ◽  
Soohyun Kim

Walking algorithms using push-off improve moving efficiency and disturbance rejection performance. However, the algorithm based on classical contact force control requires an exact model or a Force/Torque sensor. This paper proposes a novel contact force control algorithm based on neural networks. The proposed model is adapted to a linear quadratic regulator for position control and balance. The results demonstrate that this neural network-based model can accurately generate force and effectively reduce errors without requiring a sensor. The effectiveness of the algorithm is assessed with the realistic test model. Compared to the Jacobian-based calculation, our algorithm significantly improves the accuracy of the force control. One step simulation was used to analyze the robustness of the algorithm. In summary, this walking control algorithm generates a push-off force with precision and enables it to reject disturbance rapidly.


2021 ◽  
Vol 14 (3) ◽  
pp. 117
Author(s):  
Esmeralda Jushi ◽  
Eglantina Hysa ◽  
Arjona Cela ◽  
Mirela Panait ◽  
Marian Catalin Voica

The ultimate goal of central banks, worldwide, is to promote the foundations for sustainable economic growth. In the case of developing economies, in particular, such objective requires time, huge efforts, attention, and plenty of resources in order to be accomplished to the fullest degree. This paper thoroughly investigates key factors affecting Balkan countries’ economic development (as measured by gross domestic product (GDP) growth), focusing especially on the impact of remittances. The analysis was done over an 18-year time interval (2000–2017) and builds on 144 observations. The data figures were retrieved from the World Bank database while two dummies were created to test the impact of the last financial crisis (2008–2012). Econometric tools were employed to carry out a broad analysis on the interdependencies that exist and, in particular, to determine the role of remittance income on growth. The vector auto regressive model was estimated using EViews software, and was used to come up with relevant insights. Empirical findings suggest the following: population growth, remittances, and labor force participation are insignificant factors for sustainable growth. On the other hand, previous levels of GDP, trade, and foreign direct investments (FDIs) appear to be relevant for the predictor. This research provides up-to-date conclusions, which can be considered during the decision-making process of central banks, as well as by government policymakers.


Children ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 463
Author(s):  
Giampiero Bottari ◽  
Giandomenico Stellacci ◽  
Davide Ferorelli ◽  
Alessandro Dell’Erba ◽  
Maurizio Aricò ◽  
...  

During the COVID-19 pandemic, the number of accesses to the Pediatric Emergency Department (pED) in Italy sharply decreased by 30%. The purpose of this study is to evaluate how this novel setting impacted on management of children with trauma, and the use and appropriateness of imaging studies in such patients at the pED. All imaging studies performed in patients with trauma at the pED of a tertiary children’s Hospital during the first wave of the COVID-19 pandemic (between March and May 2020) were reviewed, in comparison with a control time interval (March to May 2019). In the pre-COVID control era, 669 imaging studies documented bone fractures in 145/568 children (25.5%). In the COVID-era, 79/177 (44.6%) pediatric patients showed bone fractures on 193 imaging studies. Comparative analysis shows a 71% decrease in imaging studies, and the proportion of negative imaging studies (with no evidence of bone fractures) dropped in 2020 by 19% compared to the 2019 control era (p < 0.001). The sharp decrease of negative studies suggests that the rate of appropriateness was higher during COVID-era, suggesting some attitude toward defensive medicine in the previous control year, as a result of some degree of imaging inappropriateness. The impact of a pandemic on emergency medicine may offer a unique opportunity to revisit diagnostic and therapeutic protocols in pediatrics.


Sign in / Sign up

Export Citation Format

Share Document