scholarly journals A Hierarchical Routing Graph for Supporting Mobile Devices in Industrial Wireless Sensor Networks

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 458
Author(s):  
Sangdae Kim  ◽  
Cheonyong Kim  ◽  
Hyunchong Cho  ◽  
Kwansoo Jung 

As many industrial applications require real-time and reliability communication, a variety of routing graph construction schemes were proposed to satisfy the requirements in Industrial Wireless Sensor Networks (IWSNs). Each device transmits packet through a route which is designated based on the graph. However, as existing studies consider a network consists of static devices only, they cannot cope with the network changes by movement of mobile devices considered important in the recent industrial environment. Thus, the communication requirements cannot be guaranteed because the existing path is broken by the varying network topology. The communication failure could cause critical problems such as malfunctioning equipment. The problem is caused repeatedly by continuous movement of mobile devices, even if a new graph is reconstructed for responding the changed topology. To support mobile devices exploited in various industrial environments, we propose a Hierarchical Routing Graph Construction (HRGC). The HRGC is consisted of two phases for hierarchical graph construction: In first phase, a robust graph called skeleton graph consisting only of static devices is constructed. The skeleton graph is not affected by network topology changes and does not suffer from packet loss. In second phase, the mobile devices are grafted into the skeleton graph for seamless communication. Through the grafting process, the routes are established in advance for mobile device to communicate with nearby static devices in anywhere. The simulation results show that the packet delivery ratio is improved when the graph is constructed through the HRGC.

Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4309 ◽  
Author(s):  
Tariq Ali ◽  
Muhammad Irfan ◽  
Ahmad Shaf ◽  
Abdullah Saeed Alwadie ◽  
Ahthasham Sajid ◽  
...  

Nowadays, there is a growing trend in smart cities. Therefore, the Internet of Things (IoT) enabled Underwater and Wireless Sensor Networks (I-UWSN) are mostly used for monitoring and exploring the environment with the help of smart technology, such as smart cities. The acoustic medium is used in underwater communication and radio frequency is mostly used for wireless sensor networks to make communication more reliable. Therefore, some challenging tasks still exist in I-UWSN, i.e., selection of multiple nodes’ reliable paths towards the sink nodes; and efficient topology of the network. In this research, the novel routing protocol, namely Time Based Reliable Link (TBRL), for dynamic topology is proposed to support smart city. TBRL works in three phases. In the first phase, it discovers the topology of each node in network area using a topology discovery algorithm. In the second phase, the reliability of each established link has been determined while using two nodes reliable model for a smart environment. This reliability model reduces the chances of horizontal and higher depth level communication between nodes and selects next reliable forwarders. In the third phase, all paths are examined and the most reliable path is selected to send data packets. TBRL is simulated with the help of a network simulator tool (NS-2 AquaSim). The TBRL is compared with other well known routing protocols, i.e., Depth Based Routing (DBR) and Reliable Energy-efficient Routing Protocol (R-ERP2R), to check the performance in terms of end to end delay, packet delivery ratio, and energy consumption of a network. Furthermore, the reliability of TBRL is compared with 2H-ACK and 3H-RM. The simulation results proved that TBRL performs approximately 15% better as compared to DBR and 10% better as compared to R-ERP2R in terms of aforementioned performance metrics.


Sensor Review ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Farzad Kiani ◽  
Amir Seyyedabbasi ◽  
Sajjad Nematzadeh

Purpose Efficient resource utilization in wireless sensor networks is an important issue. Clustering structure has an important effect on the efficient use of energy, which is one of the most critical resources. However, it is extremely vital to choose efficient and suitable cluster head (CH) elements in these structures to harness their benefits. Selecting appropriate CHs and finding optimal coefficients for each parameter of a relevant fitness function in CHs election is a non-deterministic polynomial-time (NP-hard) problem that requires additional processing. Therefore, the purpose of this paper is to propose efficient solutions to achieve the main goal by addressing the related issues. Design/methodology/approach This paper draws inspiration from three metaheuristic-based algorithms; gray wolf optimizer (GWO), incremental GWO and expanded GWO. These methods perform various complex processes very efficiently and much faster. They consist of cluster setup and data transmission phases. The first phase focuses on clusters formation and CHs election, and the second phase tries to find routes for data transmission. The CH selection is obtained using a new fitness function. This function focuses on four parameters, i.e. energy of each node, energy of its neighbors, number of neighbors and its distance from the base station. Findings The results obtained from the proposed methods have been compared with HEEL, EESTDC, iABC and NR-LEACH algorithms and are found to be successful using various analysis parameters. Particularly, I-HEELEx-GWO method has provided the best results. Originality/value This paper proposes three new methods to elect optimal CH that prolong the networks lifetime, save energy, improve overhead along with packet delivery ratio.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1075
Author(s):  
Federico Orozco-Santos ◽  
Víctor Sempere-Payá ◽  
Teresa Albero-Albero ◽  
Javier Silvestre-Blanes

IWSNs (Industrial Wireless Sensor Networks) have become the next step in the evolution of WSN (Wireless Sensor Networks) due to the nature and demands of modern industry. With this type of network, flexible and scalable architectures can be created that simultaneously support traffic sources with different characteristics. Due to the great diversity of application scenarios, there is a need to implement additional capabilities that can guarantee an adequate level of reliability and that can adapt to the dynamic behavior of the applications in use. The use of SDNs (Software Defined Networks) extends the possibilities of control over the network and enables its deployment at an industrial level. The signaling traffic exchanged between nodes and controller is heavy and must occupy the same channel as the data traffic. This difficulty can be overcome with the segmentation of the traffic into flows, and correct scheduling at the MAC (Medium Access Control) level, known as slices. This article proposes the integration in the SDN controller of a traffic manager, a routing process in charge of assigning different routes according to the different flows, as well as the introduction of the Time Slotted Channel Hopping (TSCH) Scheduler. In addition, the TSCH (Time Slotted Channel Hopping) is incorporated in the SDN-WISE framework (Software Defined Networking solution for Wireless Sensor Networks), and this protocol has been modified to send the TSCH schedule. These elements are jointly responsible for scheduling and segmenting the traffic that will be sent to the nodes through a single packet from the controller and its performance has been evaluated through simulation and a testbed. The results obtained show how flexibility, adaptability, and determinism increase thanks to the joint use of the routing process and the TSCH Scheduler, which makes it possible to create a slicing by flows, which have different quality of service requirements. This in turn helps guarantee their QoS characteristics, increase the PDR (Packet Delivery Ratio) for the flow with the highest priority, maintain the DMR (Deadline Miss Ratio), and increase the network lifetime.


2021 ◽  
Author(s):  
Huaying Yin ◽  
Hongmei Yang ◽  
Maryam Hajiee

Abstract Rapid developments in radio technology and processors have led to the emergence of small sensor nodes that provide communication over Wireless Sensor Networks (WSNs). The crucial issues in these networks are energy consumption management and reliable data exchange. Due to the limited resources of sensor nodes, WSNs become a vulnerable target against many security attacks. Thus, energy-aware trust-based techniques have become a powerful tool for detecting nodes’ behavior and providing security solutions in WSN. Clustering-based routings are one of the most effective methods in increasing the WSN performance. In this paper, an Energy-Aware Trust algorithm based on the AODV protocol and Multi-path Routing approach (EATMR) is proposed to improve the security of WSNs. EATMR consists of two main phases: firstly, the nodes are clustered based on the Open-Source Development Model Algorithm (ODMA), and then in the second phase, clustering-based routing is applied. In this paper, the routing process follows the AODV protocol and multi-path routes approach with considering energy-aware trust. Here, the optimal and safe route is determined based on various parameters, namely energy, trust, hop-count, and distance. In this regard, we emphasize the evaluation of node trust using direct trust, indirect trust, and a multi-objective function. The simulation has been performed in MATLAB software in the presence of a Denial of Service (DoS) attack. The simulation results show that EATMR performs better than other approaches such as M-CSO and SQEER in terms of successfully detecting malicious nodes and enhancing network lifetime, energy consumption, and packet delivery ratio.


Fault Tolerant Reliable Protocol (FTRP) is proposed as a novel routing protocol designed for Wireless Sensor Networks (WSNs). FTRP offers fault tolerance reliability for packet exchange and support for dynamic network changes. The key concept used is the use of node logical clustering. The protocol delegates the routing ownership to the cluster heads where fault tolerance functionality is implemented. FTRP utilizes cluster head nodes along with cluster head groups to store packets in transient. In addition, FTRP utilizes broadcast, which reduces the message overhead as compared to classical flooding mechanisms. FTRP manipulates Time to Live values for the various routing messages to control message broadcast. FTRP utilizes jitter in messages transmission to reduce the effect of synchronized node states, which in turn reduces collisions. FTRP performance has been extensively through simulations against Ad-hoc On-demand Distance Vector (AODV) and Optimized Link State (OLSR) routing protocols. Packet Delivery Ratio (PDR), Aggregate Throughput and End-to-End delay (E-2-E) had been used as performance metrics. In terms of PDR and aggregate throughput, it is found that FTRP is an excellent performer in all mobility scenarios whether the network is sparse or dense. In stationary scenarios, FTRP performed well in sparse network; however, in dense network FTRP’s performance had degraded yet in an acceptable range. This degradation is attributed to synchronized nodes states. Reliably delivering a message comes to a cost, as in terms of E-2-E. results show that FTRP is considered a good performer in all mobility scenarios where the network is sparse. In sparse stationary scenario, FTRP is considered good performer, however in dense stationary scenarios FTRP’s E-2-E is not acceptable. There are times when receiving a network message is more important than other costs such as energy or delay. That makes FTRP suitable for wide range of WSNs applications, such as military applications by monitoring soldiers’ biological data and supplies while in battlefield and battle damage assessment. FTRP can also be used in health applications in addition to wide range of geo-fencing, environmental monitoring, resource monitoring, production lines monitoring, agriculture and animals tracking. FTRP should be avoided in dense stationary deployments such as, but not limited to, scenarios where high application response is critical and life endangering such as biohazards detection or within intensive care units.


Author(s):  
Omkar Singh ◽  
Vinay Rishiwal

Background & Objective: Wireless Sensor Network (WSN) consist of huge number of tiny senor nodes. WSN collects environmental data and sends to the base station through multi-hop wireless communication. QoS is the salient aspect in wireless sensor networks that satisfies end-to-end QoS requirement on different parameters such as energy, network lifetime, packets delivery ratio and delay. Among them Energy consumption is the most important and challenging factor in WSN, since the senor nodes are made by battery reserved that tends towards life time of sensor networks. Methods: In this work an Improve-Energy Aware Multi-hop Multi-path Hierarchy (I-EAMMH) QoS based routing approach has been proposed and evaluated that reduces energy consumption and delivers data packets within time by selecting optimum cost path among discovered routes which extends network life time. Results and Conclusion: Simulation has been done in MATLAB on varying number of rounds 400- 2000 to checked the performance of proposed approach. I-EAMMH is compared with existing routing protocols namely EAMMH and LEACH and performs better in terms of end-to-end-delay, packet delivery ratio, as well as reduces the energy consumption 13%-19% and prolongs network lifetime 9%- 14%.


Sign in / Sign up

Export Citation Format

Share Document