scholarly journals Machine-Learning Based Determination of Gait Events from Foot-Mounted Inertial Units

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 839
Author(s):  
Matteo Zago ◽  
Marco Tarabini ◽  
Martina Delfino Spiga ◽  
Cristina Ferrario ◽  
Filippo Bertozzi ◽  
...  

A promising but still scarcely explored strategy for the estimation of gait parameters based on inertial sensors involves the adoption of machine learning techniques. However, existing approaches are reliable only for specific conditions, inertial measurements unit (IMU) placement on the body, protocols, or when combined with additional devices. In this paper, we tested an alternative gait-events estimation approach which is fully data-driven and does not rely on a priori models or assumptions. High-frequency (512 Hz) data from a commercial inertial unit were recorded during 500 steps performed by 40 healthy participants. Sensors’ readings were synchronized with a reference ground reaction force system to determine initial/terminal contacts. Then, we extracted a set of features from windowed data labeled according to the reference. Two gray-box approaches were evaluated: (1) classifiers (decision trees) returning the presence of a gait event in each time window and (2) a classifier discriminating between stance and swing phases. Both outputs were submitted to a deterministic algorithm correcting spurious clusters of predictions. The stance vs. swing approach estimated the stride time duration with an average error lower than 20 ms and confidence bounds between ±50 ms. These figures are suitable to detect clinically meaningful differences across different populations.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Osama Siddig ◽  
Ahmed Farid Ibrahim ◽  
Salaheldin Elkatatny

Unconventional resources have recently gained a lot of attention, and as a consequence, there has been an increase in research interest in predicting total organic carbon (TOC) as a crucial quality indicator. TOC is commonly measured experimentally; however, due to sampling restrictions, obtaining continuous data on TOC is difficult. Therefore, different empirical correlations for TOC have been presented. However, there are concerns about the generalization and accuracy of these correlations. In this paper, different machine learning (ML) techniques were utilized to develop models that predict TOC from well logs, including formation resistivity (FR), spontaneous potential (SP), sonic transit time (Δt), bulk density (RHOB), neutron porosity (CNP), gamma ray (GR), and spectrum logs of thorium (Th), uranium (Ur), and potassium (K). Over 1250 data points from the Devonian Duvernay shale were utilized to create and validate the model. These datasets were obtained from three wells; the first was used to train the models, while the data sets from the other two wells were utilized to test and validate them. Support vector machine (SVM), random forest (RF), and decision tree (DT) were the ML approaches tested, and their predictions were contrasted with three empirical correlations. Various AI methods’ parameters were tested to assure the best possible accuracy in terms of correlation coefficient (R) and average absolute percentage error (AAPE) between the actual and predicted TOC. The three ML methods yielded good matches; however, the RF-based model has the best performance. The RF model was able to predict the TOC for the different datasets with R values range between 0.93 and 0.99 and AAPE values less than 14%. In terms of average error, the ML-based models outperformed the other three empirical correlations. This study shows the capability and robustness of ML models to predict the total organic carbon from readily available logging data without the need for core analysis or additional well interventions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ritaban Dutta ◽  
Cherry Chen ◽  
David Renshaw ◽  
Daniel Liang

AbstractExtraordinary shape recovery capabilities of shape memory alloys (SMAs) have made them a crucial building block for the development of next-generation soft robotic systems and associated cognitive robotic controllers. In this study we desired to determine whether combining video data analysis techniques with machine learning techniques could develop a computer vision based predictive system to accurately predict force generated by the movement of a SMA body that is capable of a multi-point actuation performance. We identified that rapid video capture of the bending movements of a SMA body while undergoing external electrical excitements and adapting that characterisation using computer vision approach into a machine learning model, can accurately predict the amount of actuation force generated by the body. This is a fundamental area for achieving a superior control of the actuation of SMA bodies. We demonstrate that a supervised machine learning framework trained with Restricted Boltzmann Machine (RBM) inspired features extracted from 45,000 digital thermal infrared video frames captured during excitement of various SMA shapes, is capable to estimate and predict force and stress with 93% global accuracy with very low false negatives and high level of predictive generalisation.


2020 ◽  
Vol 17 (8) ◽  
pp. 3449-3452
Author(s):  
M. S. Roobini ◽  
Y. Sai Satwick ◽  
A. Anil Kumar Reddy ◽  
M. Lakshmi ◽  
D. Deepa ◽  
...  

In today’s world diabetes is the major health challenges in India. It is a group of a syndrome that results in too much sugar in the blood. It is a protracted condition that affects the way the body mechanizes the blood sugar. Prevention and prediction of diabetes mellitus is increasingly gaining interest in medical sciences. The aim is how to predict at an early stage of diabetes using different machine learning techniques. In this paper basically, we use well-known classification that are Decision tree, K-Nearest Neighbors, Support Vector Machine, and Random forest. These classification techniques used with Pima Indians diabetes dataset. Therefore, we predict diabetes at different stage and analyze the performance of different classification techniques. We Also proposed a conceptual model for the prediction of diabetes mellitus using different machine learning techniques. In this paper we also compare the accuracy of the different machine learning techniques to finding the diabetes mellitus at early stage.


Algorithms ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 313
Author(s):  
Nicolas Dupin ◽  
Rémi Parize ◽  
El-Ghazali Talbi

This paper considers a variant of the Vehicle Routing Problem with Time Windows, with site dependencies, multiple depots and outsourcing costs. This problem is the basis for many technician routing problems. Having both site-dependency and time window constraints lresults in difficulties in finding feasible solutions and induces highly constrained instances. Matheuristics based on Mixed Integer Linear Programming compact formulations are firstly designed. Column Generation matheuristics are then described by using previous matheuristics and machine learning techniques to stabilize and speed up the convergence of the Column Generation algorithm. The computational experiments are analyzed on public instances with graduated difficulties in order to analyze the accuracy of algorithms for ensuring feasibility and the quality of solutions for weakly to highly constrained instances. The results emphasize the interest of the multiple types of hybridization between mathematical programming, machine learning and heuristics inside the Column Generation framework. This work offers perspectives for many extensions of technician routing problems.


2019 ◽  
Vol 8 (4) ◽  
pp. 11704-11707

Cardiac Arrhythmia is a type of condition a human being suffers from abnormal heart rhythm. This is experienced due to the malfunctioning of electrical impulses that coordinate the heartbeat. When this happens the heartbeats slow/ fast more precisely irregularly. The rhythm of the heart is controlled by a major node called the sinus node which is present at the top of the heart, triggers the electrical pulses which make the heart to beat and pumping of blood to the body. Some of the symptoms of Cardiac Arrhythmia are fainting, unconsciousness, shortness of breath, unexpected functioning of the heart. It leads to death in minutes if medical attention is not provided. To diagnose this doctor, require to study the heart recordings evaluate heartbeats from different parts of the body accurately. It takes a lot of time to evaluate so based on the research work contributed in this field we try to propose a different approach to the same. In this paper, we compare different machine learning techniques and algorithms proposed by different authors and understand the advantages and disadvantages of the system and to bring a new system in place of the existing system where all have used the same ECG recordings from the same database of MIT-BIH. With the initial research work done by us we found out that the use of Phonocardiogram Recordings (PCG) provides more fidelity and accurate compared to ECG recordings. With the initial stage of work, we take the PCG recordings dataset and convert it to a spectrogram image and apply a convolutional neural network to predict the normal or abnormal heartbeat


2020 ◽  
Author(s):  
Emily Matijevich ◽  
Leon R. Scott ◽  
Peter Volgyesi ◽  
Kendall H. Derry ◽  
Karl Zelik

There are tremendous opportunities to advance science, clinical care, sports performance, and societal health if we are able to develop tools for monitoring musculoskeletal loading (e.g., forces on bones or muscles) outside the lab. While wearable sensors enable non-invasive monitoring of human movement in applied situations, current commercial wearables do not estimate tissue-level loading on structures inside the body. Here we explore the feasibility of using wearable sensors to estimate tibial bone force during running. First, we used lab-based data and musculoskeletal modeling to estimate tibial force for ten participants running across a range of speeds and slopes. Next, we converted lab-based data to signals feasibly measured with wearables (inertial measurement units on the foot and shank, and a pressure-insole) and used these data to develop two multi-sensor algo rithms for estimating peak tibial force: one physics-based and one machine learning. Additionally, to reflect current running wearables that utilize foot impact metrics to infer musculoskeletal loading or injury risk, we estimated tibial force using the ground reaction force vertical average loading rate (VALR). Using VALR to estimate peak tibial force resulted in a mean absolute percent error of 9.9%, which was no more accurate than a theoretical step counter that assumed the same peak force for every running step. Our physics-based algorithm reduced error to 5.2%, and our machine learning algorithm reduced error to 2.6%. Further, to gain insights into how force estimation accuracy relates to overuse injury risk, we computed bone damage expected due to peak force. We found that modest errors in tibial force translated into large errors in bone damage estimates. For example, a 9.9% error in tibial force using VALR translated into 104% error in bone damage estimates. Encouragingly, the physics-based and machine learning algorithms reduced damage errors to 41% and 18%, respectively. This study highlights the exciting potential to combine wearables, musculoskeletal biomechanics and machine learning to develop more accurate tools for monitoring musculoskeletal loading in applied situations.


2021 ◽  
Author(s):  
George Shih ◽  
Hongyu Chen

Background The Radiological Society of North America (RSNA) receives more than 8000 abstracts yearly for scientific presentations, scientific posters, and scientific papers. Each abstract is assigned manually one of 16 top-level categories (e.g. "Breast Imaging") for workflow purposes. Additionally, each abstract receives a grade from 1-10 based on a variety of subjective factors such as style and perceived writing quality. Using machine learning to automate, at least partially, the categorization of abstract submissions can result in saving many hours of manual labor. Methods A total of 45527 RSNA abstract submissions from 2014 through 2019 were ingested, tokenized, and pre-processed with a standard natural language programming protocol. A bag-of-words (BOW) model was used as a baseline to evaluate two more sophisticated models, convolutional neural networks and recurrent neural networks, and also evaluate an ensemble model featuring all three neural networks. Results ensemble model was able to achieve 73% testing accuracy for classifying the 16 top-level categories, outperforming all other models. The top model for classifying abstract grade was also an ensemble model, achieving a mean average error (MAE) of 1.01. Conclusion While the baseline BOW model was the highest performing individual classifier, ensemble models that included state-of-the-art neural networks were able to outperform it. Our research shows that machine learning techniques can, to a reasonable degree of accuracy, predict both objective factors such as abstract category as well as subjective factors such as abstract grade. This work builds upon previous research involving using natural language processing on scientific abstracts to make useful inferences that address a meaningful problem.


2021 ◽  
Vol 118 (43) ◽  
pp. e2104925118
Author(s):  
Hyoyoung Jeong ◽  
Sung Soo Kwak ◽  
Seokwoo Sohn ◽  
Jong Yoon Lee ◽  
Young Joong Lee ◽  
...  

Early identification of atypical infant movement behaviors consistent with underlying neuromotor pathologies can expedite timely enrollment in therapeutic interventions that exploit inherent neuroplasticity to promote recovery. Traditional neuromotor assessments rely on qualitative evaluations performed by specially trained personnel, mostly available in tertiary medical centers or specialized facilities. Such approaches are high in cost, require geographic proximity to advanced healthcare resources, and yield mostly qualitative insight. This paper introduces a simple, low-cost alternative in the form of a technology customized for quantitatively capturing continuous, full-body kinematics of infants during free living conditions at home or in clinical settings while simultaneously recording essential vital signs data. The system consists of a wireless network of small, flexible inertial sensors placed at strategic locations across the body and operated in a wide-bandwidth and time-synchronized fashion. The data serve as the basis for reconstructing three-dimensional motions in avatar form without the need for video recordings and associated privacy concerns, for remote visual assessments by experts. These quantitative measurements can also be presented in graphical format and analyzed with machine-learning techniques, with potential to automate and systematize traditional motor assessments. Clinical implementations with infants at low and at elevated risks for atypical neuromotor development illustrates application of this system in quantitative and semiquantitative assessments of patterns of gross motor skills, along with body temperature, heart rate, and respiratory rate, from long-term and follow-up measurements over a 3-mo period following birth. The engineering aspects are compatible for scaled deployment, with the potential to improve health outcomes for children worldwide via early, pragmatic detection methods.


2020 ◽  
Vol 17 (8) ◽  
pp. 3453-3457
Author(s):  
Chinka Siva Gopi ◽  
Chidipudi Sivareddy ◽  
K. Mohana Prasad ◽  
R. Sabitha ◽  
K. Ashok Kumar

Cancer is a risky disease which could affect the particular area in depth and may risk the body parts. Now a days, more females are subject to breast cancers. So that Machine Learning Techniques has proposed to analyze the risky area in which the information is utilized for forecasting additional incidents. Machine Learning is popular scheme within several programs one remaining healthcare evaluation. Image Classification as well as feature extraction will bring the affected area’s image into several analyzing methods. With this proposed system, we’ve suggested an CNN (Convolution Neural Network) active design which fetches a sequence of pictures coming from a healthcare scanner repository so that the pictures are preprocessed as well as additional segmented feature extraction. The effectiveness on the suggested design is examined and it is as opposed along with other Machine Learning procedures and it is found the proposed system has supplies the greater results. The functionality on the unit tends to be more precise as the unit has an iterative method for include removal inside classifying pictures. There are some images are kept for the training and testing. We have achieved the accuracy level of comparing with existing model.


Sign in / Sign up

Export Citation Format

Share Document