scholarly journals Combining wearable sensor signals, machine learning and biomechanics to estimate tibial bone force and damage during running

2020 ◽  
Author(s):  
Emily Matijevich ◽  
Leon R. Scott ◽  
Peter Volgyesi ◽  
Kendall H. Derry ◽  
Karl Zelik

There are tremendous opportunities to advance science, clinical care, sports performance, and societal health if we are able to develop tools for monitoring musculoskeletal loading (e.g., forces on bones or muscles) outside the lab. While wearable sensors enable non-invasive monitoring of human movement in applied situations, current commercial wearables do not estimate tissue-level loading on structures inside the body. Here we explore the feasibility of using wearable sensors to estimate tibial bone force during running. First, we used lab-based data and musculoskeletal modeling to estimate tibial force for ten participants running across a range of speeds and slopes. Next, we converted lab-based data to signals feasibly measured with wearables (inertial measurement units on the foot and shank, and a pressure-insole) and used these data to develop two multi-sensor algo rithms for estimating peak tibial force: one physics-based and one machine learning. Additionally, to reflect current running wearables that utilize foot impact metrics to infer musculoskeletal loading or injury risk, we estimated tibial force using the ground reaction force vertical average loading rate (VALR). Using VALR to estimate peak tibial force resulted in a mean absolute percent error of 9.9%, which was no more accurate than a theoretical step counter that assumed the same peak force for every running step. Our physics-based algorithm reduced error to 5.2%, and our machine learning algorithm reduced error to 2.6%. Further, to gain insights into how force estimation accuracy relates to overuse injury risk, we computed bone damage expected due to peak force. We found that modest errors in tibial force translated into large errors in bone damage estimates. For example, a 9.9% error in tibial force using VALR translated into 104% error in bone damage estimates. Encouragingly, the physics-based and machine learning algorithms reduced damage errors to 41% and 18%, respectively. This study highlights the exciting potential to combine wearables, musculoskeletal biomechanics and machine learning to develop more accurate tools for monitoring musculoskeletal loading in applied situations.

Author(s):  
Aleksey Klokov ◽  
Evgenii Slobodyuk ◽  
Michael Charnine

The object of the research when writing the work was the body of text data collected together with the scientific advisor and the algorithms for processing the natural language of analysis. The stream of hypotheses has been tested against computer science scientific publications through a series of simulation experiments described in this dissertation. The subject of the research is algorithms and the results of the algorithms, aimed at predicting promising topics and terms that appear in the course of time in the scientific environment. The result of this work is a set of machine learning models, with the help of which experiments were carried out to identify promising terms and semantic relationships in the text corpus. The resulting models can be used for semantic processing and analysis of other subject areas.


Author(s):  
Angana Saikia ◽  
Vinayak Majhi ◽  
Masaraf Hussain ◽  
Sudip Paul ◽  
Amitava Datta

Tremor is an involuntary quivering movement or shake. Characteristically occurring at rest, the classic slow, rhythmic tremor of Parkinson's disease (PD) typically starts in one hand, foot, or leg and can eventually affect both sides of the body. The resting tremor of PD can also occur in the jaw, chin, mouth, or tongue. Loss of dopamine leads to the symptoms of Parkinson's disease and may include a tremor. For some people, a tremor might be the first symptom of PD. Various studies have proposed measurable technologies and the analysis of the characteristics of Parkinsonian tremors using different techniques. Various machine-learning algorithms such as a support vector machine (SVM) with three kernels, a discriminant analysis, a random forest, and a kNN algorithm are also used to classify and identify various kinds of tremors. This chapter focuses on an in-depth review on identification and classification of various Parkinsonian tremors using machine learning algorithms.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1557 ◽  
Author(s):  
Ilaria Conforti ◽  
Ilaria Mileti ◽  
Zaccaria Del Prete ◽  
Eduardo Palermo

Ergonomics evaluation through measurements of biomechanical parameters in real time has a great potential in reducing non-fatal occupational injuries, such as work-related musculoskeletal disorders. Assuming a correct posture guarantees the avoidance of high stress on the back and on the lower extremities, while an incorrect posture increases spinal stress. Here, we propose a solution for the recognition of postural patterns through wearable sensors and machine-learning algorithms fed with kinematic data. Twenty-six healthy subjects equipped with eight wireless inertial measurement units (IMUs) performed manual material handling tasks, such as lifting and releasing small loads, with two postural patterns: correctly and incorrectly. Measurements of kinematic parameters, such as the range of motion of lower limb and lumbosacral joints, along with the displacement of the trunk with respect to the pelvis, were estimated from IMU measurements through a biomechanical model. Statistical differences were found for all kinematic parameters between the correct and the incorrect postures (p < 0.01). Moreover, with the weight increase of load in the lifting task, changes in hip and trunk kinematics were observed (p < 0.01). To automatically identify the two postures, a supervised machine-learning algorithm, a support vector machine, was trained, and an accuracy of 99.4% (specificity of 100%) was reached by using the measurements of all kinematic parameters as features. Meanwhile, an accuracy of 76.9% (specificity of 76.9%) was reached by using the measurements of kinematic parameters related to the trunk body segment.


Author(s):  
Ivo S. G. Brites ◽  
Lidia M. Silva ◽  
Jorge Luis Victória Barbosa ◽  
Sandro J. Rigo ◽  
Sergio Duarte Correia ◽  
...  

This article presents a systematic mapping study dedicated to conduct a literature review on machine learning and IoT applied in the identification of diseases through heart sounds. This research was conducted between January 2010 and July 2021, considering IEEE Xplore, PubMed Central, ACM Digital Library, JMIR- Journal of Medical Internet Research, Springer Library, and Science Direct. The initial search resulted in 4,372 papers, and after applying the inclusion and exclusion criteria, 58 papers were selected for full reading to answer the research questions. The main results are: of the 58 articles selected, 46 (79.31%) mention heart rate observation methods with wearable sensors and digital stethoscopes, and 34 (58.62%) mention care with machine learning algorithms. The analysis of the studies based on the bibliometric network generated by the VOSviewer showed in 13 studies (22.41%) a trend related to the use of intelligent services in the prediction of diagnoses related to cardiovascular disorders.


Diabetes is a most common disease that occurs to most of the humans now a day. The predictions for this disease are proposed through machine learning techniques. Through this method the risk factors of this disease are identified and can be prevented from increasing. Early prediction in such disease can be controlled and save human’s life. For the early predictions of this disease we collect data set having 8 attributes diabetic of 200 patients. The patients’ sugar level in the body is tested by the features of patient’s glucose content in the body and according to the age. The main Machine learning algorithms are Support vector machine (SVM), naive bayes (NB), K nearest neighbor (KNN) and Decision Tree (DT). In the exiting the Naive Bayes the accuracy levels are 66% but in the Decision tree the accuracy levels are 70 to 71%. The accuracy levels of the patients are not proper in range. But in XG boost classifiers even after the Naïve Bayes 74 Percentage and in Decision tree the accuracy levels are 89 to 90%. In the proposed system the accuracy ranges are shown properly and this is only used mostly. A dataset of 729 patients can be stored in Mongo DB and in that 129 patients repots are taken for the prediction purpose and the remaining are used for training. The training datasets are used for the prediction purposes.


2019 ◽  
Vol 8 (4) ◽  
pp. 11704-11707

Cardiac Arrhythmia is a type of condition a human being suffers from abnormal heart rhythm. This is experienced due to the malfunctioning of electrical impulses that coordinate the heartbeat. When this happens the heartbeats slow/ fast more precisely irregularly. The rhythm of the heart is controlled by a major node called the sinus node which is present at the top of the heart, triggers the electrical pulses which make the heart to beat and pumping of blood to the body. Some of the symptoms of Cardiac Arrhythmia are fainting, unconsciousness, shortness of breath, unexpected functioning of the heart. It leads to death in minutes if medical attention is not provided. To diagnose this doctor, require to study the heart recordings evaluate heartbeats from different parts of the body accurately. It takes a lot of time to evaluate so based on the research work contributed in this field we try to propose a different approach to the same. In this paper, we compare different machine learning techniques and algorithms proposed by different authors and understand the advantages and disadvantages of the system and to bring a new system in place of the existing system where all have used the same ECG recordings from the same database of MIT-BIH. With the initial research work done by us we found out that the use of Phonocardiogram Recordings (PCG) provides more fidelity and accurate compared to ECG recordings. With the initial stage of work, we take the PCG recordings dataset and convert it to a spectrogram image and apply a convolutional neural network to predict the normal or abnormal heartbeat


Author(s):  
Chi Cuong Vu ◽  
Jooyong Kim

Wearable sensors for human physiological monitoring have attracted tremendous interest from researchers in recent years. However, most of the research was only done in simple trials without any significant analytical algorithms. This study provides a way of recognizing human motion by combining textile stretch sensors based on single-walled carbon nanotubes (SWCNTs) and spandex fabric (PET/SP) and machine learning algorithms in a realistic applications. In the study, the performance of the system will be evaluated by identification rate and accuracy of the motion standardized. This research aims to provide a realistic motion sensing wearable products without unnecessary heavy and uncomfortable electronic devices.


Author(s):  
Anna Ferrari ◽  
Daniela Micucci ◽  
Marco Mobilio ◽  
Paolo Napoletano

AbstractHuman activity recognition (HAR) is a line of research whose goal is to design and develop automatic techniques for recognizing activities of daily living (ADLs) using signals from sensors. HAR is an active research filed in response to the ever-increasing need to collect information remotely related to ADLs for diagnostic and therapeutic purposes. Traditionally, HAR used environmental or wearable sensors to acquire signals and relied on traditional machine-learning techniques to classify ADLs. In recent years, HAR is moving towards the use of both wearable devices (such as smartphones or fitness trackers, since they are daily used by people and they include reliable inertial sensors), and deep learning techniques (given the encouraging results obtained in the area of computer vision). One of the major challenges related to HAR is population diversity, which makes difficult traditional machine-learning algorithms to generalize. Recently, researchers successfully attempted to address the problem by proposing techniques based on personalization combined with traditional machine learning. To date, no effort has been directed at investigating the benefits that personalization can bring in deep learning techniques in the HAR domain. The goal of our research is to verify if personalization applied to both traditional and deep learning techniques can lead to better performance than classical approaches (i.e., without personalization). The experiments were conducted on three datasets that are extensively used in the literature and that contain metadata related to the subjects. AdaBoost is the technique chosen for traditional machine learning, while convolutional neural network is the one chosen for deep learning. These techniques have shown to offer good performance. Personalization considers both the physical characteristics of the subjects and the inertial signals generated by the subjects. Results suggest that personalization is most effective when applied to traditional machine-learning techniques rather than to deep learning ones. Moreover, results show that deep learning without personalization performs better than any other methods experimented in the paper in those cases where the number of training samples is high and samples are heterogeneous (i.e., they represent a wider spectrum of the population). This suggests that traditional deep learning can be more effective, provided you have a large and heterogeneous dataset, intrinsically modeling the population diversity in the training process.


Sign in / Sign up

Export Citation Format

Share Document