scholarly journals Design and Experiments of a Portable Seabed Integrated Detection Sonar

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2633
Author(s):  
Jingxin Ma ◽  
Haisen Li ◽  
Jianjun Zhu ◽  
Weidong Du ◽  
Chao Xu ◽  
...  

The integrated observation of seabed topography, sediment geomorphology and sub-bottom profile information is very important for seabed remote sensing and mapping. To improve the efficiency of seabed detection and meet the needs of portable development of detection equipment, we developed a portable seabed feature integrated detection sonar (PSIDS) with whcih a single sonar device can simultaneously detect the above three types of seabed information. The underwater transducer is mainly composed of the following three components: a parametric emission array as the sound source, a high frequency receiving linear array for multibeam echo signal collection, and a two-dimensional vector hydrophone for receiving the low-frequency sediment echo signal. Field experiments were conducted to validate the performance of the PSIDS on 11–17 January 2018 in Jiaozhou Bay, China. (1) PSIDS could perform the functions of both multibeam sonar and sub-bottom profiler; (2) The synchronously and integrated measurement of various seabed information was achieved by alternately emitting multibeam echo-sounding and sub-bottom profiling signal using parametric source. The detection results proved the feasibility and practicability of PSIDS to achieve multiple seafloor characteristics. PSIDS provides a new idea for developing integrated seabed detection sonar. In terms of convenience and data fusion, it is a good option to use this equipment for integrated seabed detection.

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1548
Author(s):  
Jiuling Hu ◽  
Lianjin Hong ◽  
Lili Yin ◽  
Yu Lan ◽  
Hao Sun ◽  
...  

At present, high-speed underwater acoustic communication requires underwater transducers with the characteristics of low frequency and broadband. The low-frequency transducers also are expected to be low-frequency directional for realization of point-to-point communication. In order to achieve the above targets, this paper proposes a new type of flextensional transducer which is constructed of double mosaic piezoelectric ceramic rings and spherical cap metal shells. The transducer realizes broadband transmission by means of the coupling between radial vibration of the piezoelectric rings and high-order flexural vibration of the spherical cap metal shells. The low-frequency directional transmission of the transducer is realized by using excitation signals with different amplitude and phase on two mosaic piezoelectric rings. The relationship between transmitting voltage response (TVR), resonance frequency and structural parameters of the transducer is analyzed by finite element software COMSOL. The broadband performance of the transducer is also optimized. On this basis, the low-frequency directivity of the transducer is further analyzed and the ratio of the excitation signals of the two piezoelectric rings is obtained. Finally, a prototype of the broadband ring flextensional underwater transducer is fabricated according to the results of simulation. The electroacoustic performance of the transducer is tested in an anechoic water tank. Experimental results show that the maximum TVR of the transducer is 147.2 dB and the operation bandwidth is 1.5–4 kHz, which means that the transducer has good low-frequency, broadband transmission capability. Meanwhile, cardioid directivity is obtained at 1.4 kHz and low-frequency directivity is realized.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Renxin Wang ◽  
Wei Shen ◽  
Wenjun Zhang ◽  
Jinlong Song ◽  
Nansong Li ◽  
...  

AbstractDetecting low-frequency underwater acoustic signals can be a challenge for marine applications. Inspired by the notably strong response of the auditory organs of pectis jellyfish to ultralow frequencies, a kind of otolith-inspired vector hydrophone (OVH) is developed, enabled by hollow buoyant spheres atop cilia. Full parametric analysis is performed to optimize the cilium structure in order to balance the resonance frequency and sensitivity. After the structural parameters of the OVH are determined, the stress distributions of various vector hydrophones are simulated and analyzed. The shock resistance of the OVH is also investigated. Finally, the OVH is fabricated and calibrated. The receiving sensitivity of the OVH is measured to be as high as −202.1 dB@100 Hz (0 dB@1 V/μPa), and the average equivalent pressure sensitivity over the frequency range of interest of the OVH reaches −173.8 dB when the frequency ranges from 20 to 200 Hz. The 3 dB polar width of the directivity pattern for the OVH is measured as 87°. Moreover, the OVH is demonstrated to operate under 10 MPa hydrostatic pressure. These results show that the OVH is promising in low-frequency underwater acoustic detection.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1216
Author(s):  
Xin Wang ◽  
Bo Li ◽  
Fan Zhao ◽  
Xinyu Luo ◽  
Luxi Huang ◽  
...  

Due to the occlusion of the moon, an annular solar eclipse will have an effect on the ionosphere above the earth. The change of the ionosphere, for the low-frequency time-code signal that relies on it as a reflection medium for long-distance propagation, the signal field strength, and other parameters will also produce corresponding changes, which will affect the normal operation of the low-frequency time-code time service system. This paper selects the solar eclipse that occurred in China on 21 June 2020, and uses the existing measurement equipment to carry out experimental research on the low-frequency time-code signal. We measured and analyzed the signal field strength from 20 June 2020 to 23 June 2020, and combined solar activity data, ionospheric data, and geomagnetic data, and attempted to explore the reasons and rules of the change of signal parameters. The results showed that the field strength of the low-frequency time-code signal changed dramatically within a short time period, the max growth value can reach up to 17 dBμV/m and the variation trend yielded ‘three mutations’. This change in signal field strength is probably due to the occurrence of a solar eclipse that has an effect on the ionosphere. When the signal propagation conditions change, the signal strength will also change accordingly.


Geophysics ◽  
2002 ◽  
Vol 67 (1) ◽  
pp. 77-88 ◽  
Author(s):  
Lee D. Slater ◽  
David Lesmes

The induced polarization (IP) response of rocks and soils is a function of lithology and fluid conductivity. IP measurements are sensitive to the low‐frequency capacitive properties of rocks and soils, which are controlled by diffusion polarization mechanisms operating at the grain‐fluid interface. IP interpretation typically is in terms of the conventional field IP parameters: chargeability, percentage frequency effect, and phase angle. These parameters are dependent upon both surface polarization mechanisms and bulk (volumetric) conduction mechanisms. Consequently, they afford a poor quantification of surface polarization processes of interest to the field geophysicist. A parameter that quantifies the magnitude of surface polarization is the normalized chargeability, defined as the chargeability divided by the resistivity magnitude. This parameter is proportional to the quadrature conductivity measured in the complex resistivity method. For nonmetallic minerals, the quadrature conductivity and normalized chargeability are closely related to lithology (through the specific surface area) and surface chemistry. Laboratory and field experiments were performed to determine the dependence of the standard IP parameters and the normalized chargeability on two important environmental parameters: salinity and clay content. The laboratory experiments illustrate that the chargeability is strongly correlated with the sample resistivity, which depends on salinity, porosity, saturation, and clay content. The normalized chargeability is shown to be independent of the sample resistivity and it is proportional to the quadrature conductivity, which is directly related to the surface polarization processes. Laboratory‐derived relationships between conductivity and salinity, and normalized chargeability and clay content, are extended to the interpretation of 1‐D and 2‐D field‐IP surveys. In the 2‐D survey, the apparent conductivity and normalized chargeability data are used to segment the images into relatively clay‐free and clay‐rich zones. A similar approach can eventually be used to predict relative variations in the subsurface clay content, salinity and, perhaps, contaminant concentrations.


2011 ◽  
Vol 403-408 ◽  
pp. 1817-1822
Author(s):  
Xi Feng Zhou ◽  
Xiao Wu ◽  
Qian Gang Guo

The quality of ultrasonic flaw echo signal is the foundation of achieving qualitative and quantitative analysis in the in ultrasonic flaw detection. In practice, the flaw echo signals are often contaminated or even annihilation by random noise. According to the characteristics of ultrasonic flaw echo signal, wavelet packet has more accurate local analysis ability in low frequency and high frequency part. This paper discusses de-noising in ultrasonic signals based on wavelet packet analysis, and proposes an improved threshold approach for de-noising. The results show that: It remarkably raises the signal-to-noise ratio of ultrasonic flaw echo signal and improves the quality of signal with improved wavelet packet threshold.


Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3125
Author(s):  
Zou ◽  
Chen ◽  
Liu

Considering the lack of precision in transforming measured micro-electro-mechanical system (MEMS) accelerometer output signals into elevation signals, this paper proposes a bridge dynamic displacement reconstruction method based on the combination of ensemble empirical mode decomposition (EEMD) and time domain integration, according to the vibration signal traits of a bridge. Through simulating bridge analog signals and verifying a vibration test bench, four bridge dynamic displacement monitoring methods were analyzed and compared. The proposed method can effectively eliminate the influence of low-frequency integral drift and high-frequency ambient noise on the integration process. Furthermore, this algorithm has better adaptability and robustness. The effectiveness of the method was verified by field experiments on highway elevated bridges.


2015 ◽  
Vol 2015 ◽  
pp. 1-8
Author(s):  
Chao Huang ◽  
Xin Xu ◽  
Dunge Liu ◽  
Wanhua Zhu ◽  
Xiaojuan Zhang ◽  
...  

It is a technical challenge to effectively remove the influence of magnetic noise from the vicinity of the receiving sensors on low-frequency magnetic communication. The traditional denoising methods are difficult to extract high-quality original signals under the condition of low SNR (the signal-to-noise ratio). In this paper, we analyze the numerical characteristics of the low-frequency magnetic field and propose the algorithms of the fast optimization of blind source separation (FOBSS) and the frequency-domain correlation extraction (FDCE). FOBSS is based on blind source separation (BSS). Signal extraction of low SNR can be implemented through FOBSS and FDCE. This signal extraction method is verified in multiple field experiments which can remove the magnetic noise by about 25 dB or more.


1997 ◽  
Vol 75 (2) ◽  
pp. 302-307 ◽  
Author(s):  
Stanislav Pribil ◽  
Jaroslav Picman

We tested five hypotheses that may explain why House Wren (Troglodytes aedon) nests are rarely parasitized by Brown-headed Cowbirds (Molothrus ater). House Wrens may prevent parasitism in five ways: (1) by choosing to nest in cavities with small entrances (inaccessible-entrance hypothesis), (2) by restricting the size of the entrance with nest material (nest-structure hypothesis), (3) by puncturing and ejecting parasitic eggs (puncture–ejection hypothesis), (4) by burying the parasitized clutch under a new nest (egg-burial hypothesis), or (5) by abandoning the parasitized nest altogether (nest-desertion hypothesis). We tested these hypotheses in field experiments and found that (i) female cowbirds cannot enter circular entrances smaller than 38 mm in diameter, (ii) wrens prefer cavities with small entrances (inaccessible to cowbirds) to those with large entrances (accessible to cowbirds), (iii) when forced to breed in cavities with large entrances, wrens do not reduce the entrance size with nest material, (iv) despite the unusual strength of cowbird eggs, wrens are physically capable of puncture–ejecting them, (v) wrens do not puncture–eject cowbird eggs from their own nests, (vi) wrens do not abandon parasitized nests or bury the parasitized clutches under new nests. These results are consistent with the inaccessible-entrance hypothesis. We propose that additional nesting adaptations, as well as active cowbird avoidance of House Wrens, may contribute to the low frequency of cowbird parasitism.


Geophysics ◽  
2017 ◽  
Vol 82 (6) ◽  
pp. P119-P128
Author(s):  
Daniel Wehner ◽  
Martin Landrø

In the seismic industry, there is increasing interest in generating and recording low frequencies, which leads to better data quality and can be important for full-waveform inversion. The air gun is a seismic source with a signal that consists of the (1) main impulse, (2) oscillating bubble, and (3) rising of this air bubble. However, there has been little investigation of the third characteristic. We have studied a low-frequency signal that could be created by the rising air bubble and find the contribution to the low-frequency content in seismic acquisition. We use a simple theory and modeling of rising spheres in water and compute the acoustic signal created by this effect. We conduct tank and field experiments with a submerged buoy that is released from different depths and record the acoustic signal with hydrophones along the rising path. The experiments simulate the signal from the rising bubble separated from the other two effects (1 and 2). Furthermore, we use data recorded below a single air gun fired at different depths to investigate if we can observe the proposed signal. We find that the rising bubble creates a low-frequency signal. Compared with the main impulse and the oscillating bubble effect of an air-gun signal, the contribution of the rising bubble is weak, on the order of 1/900 depending on the bubble size. By using large air-gun arrays tuned to create one big bubble, the contribution of the signal can be increased. The enhanced signal can be important for deep targets or basin exploration because the low-frequency signal is less attenuated.


Sign in / Sign up

Export Citation Format

Share Document