scholarly journals Planetary Gearbox Dynamic Modeling Considering Bearing Clearance and Sun Gear Tooth Crack

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2638
Author(s):  
Xianhua Chen ◽  
Xingkai Yang ◽  
Ming J. Zuo ◽  
Zhigang Tian

Planetary gearbox systems are critical mechanical components in heavy machinery such as wind turbines. They may suffer from various failure modes, due to the harsh working environment. Dynamic modeling is a useful method to support early fault detection for enhancing reliability and reducing maintenance costs. However, reported studies have not considered the sun gear tooth crack and bearing clearance simultaneously to analyze their combined effect on vibration characteristics of planetary gearboxes. In this paper, a dynamic model is developed for planetary gearboxes considering the clearance of planet gear, sun gear, and carrier bearings, as well as sun gear tooth crack levels. Bearing forces are calculated considering bearing clearance, and the dynamic model equations are updated accordingly. The results reveal that the combination of bearing clearances can affect the vibration response with sun gear tooth crack by increasing the kurtosis. It is found that the effect of planet gear bearing clearance is very small, while the sun gear and carrier bearing clearance has clear impact on the vibration responses. These findings suggest that the incorporation of bearing clearance is important for planetary gearbox dynamic modeling.

Author(s):  
Laihao Yang ◽  
Meng Ma ◽  
Shuming Wu ◽  
Xuefeng Chen ◽  
Ruqiang Yan ◽  
...  

Rotating blade is one of the most important components for turbomachinery. Blade crack is one of the most common and dangerous failure modes for rotating blade. Therefore, the fault mechanism and feature extraction of blade crack are vital for the safety assurance of turbomachinery. This study is aimed at the nonlinear dynamic model of rotating blade with transverse crack and the prior feature extraction of blade crack faults based on the vibration responses. First and foremost, a high-fidelity breathing crack model (HFBCM) for rotating blade is proposed on the basis of criterion for stress states at crack section. Since HFBCM is physically deduced from the perspective of energy dissipation and the coupling between centrifugal stress and bending stress is considered, the physical interpretability and the accuracy of the crack model are enhanced comparing with conventional models. The validity of the proposed HFBCM is verified through the comparison study among HFBCM, conventional crack models, and finite element-based contact crack model (FECCM). It is suggested that HFBCM behaves best among the analytical models and matches well with FECCM. With the proposed HFBCM, the nonlinear vibration responses are investigated, and four types of blade crack detection indicators for rotating blade and their quantification method are presented. The numerical study manifests that all these indicators can well characterize the occurrence and severity of crack faults for rotating blade. It is indicated that these indicators can serve as the crack-monitoring indexes.


2020 ◽  
Vol 10 (22) ◽  
pp. 8062
Author(s):  
Jian Shen ◽  
Lun Zhang ◽  
Niaoqing Hu

Planet gear is the most unique dynamic component in planetary gearbox. It rotates around sun gear while rotating around its own central axis, causing modulation effect in monitoring signal. Planetary gear is usually connected to heavy external loads and other transmissions, fault feature of planet gear may be overwhelmed by noises and other signals. Focused on planet gear inside planetary gearbox, a method for fault diagnosis is proposed in this paper based on continuous vibration separation (CVS) and minimum entropy deconvolution (MED). In this method, CVS is designed to separate dynamic responses of planet gear from overall vibration responses of planetary gearbox by overcoming the modulation effect and depressing noises. MED is used for enhancement detection of fault-related impulses. Simulations and experiments are conducted to collect signals for analysis. The proposed method is also compared with vibration separation method (VS). Both simulation and experiment analysis indicate that the proposed planet gear fault diagnosis method is effective. Comparative study indicates that CVS-MED method improves VS by keeping signal periodicity while overcoming modulation effect and depressing noises.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Wuzhong Tan ◽  
Jiangming Wu ◽  
De Ni ◽  
Hongzhi Yan ◽  
Enming Xiang ◽  
...  

New generations of powertrains are using gearboxes with multiple speed-shift designs to improve fuel efficiency. However, transmission controls and calibration are substantially time consuming, specifically during shift processes. To study the dynamic characteristics of a gearbox with a double-planetary gear train and analyze the influence of external excitation and internal parameters on the dynamic response of a system, dynamic modeling and simulation of the transmission system are conducted. Some physical processes are complex and difficult to express via lumped mass modeling. The dynamic model of a double-planetary gearbox is obtained by adopting the bond graph method based on the working principle analysis of the transmission, as well as the kinematic characteristics of the double-planetary gear train. Subsequently, state equations are deduced from the dynamic model of the power transmission system for simplified calculations, which can effectively facilitate the shift process simulation. The basic case of different shift plans and times is originally analyzed, followed by an analysis of the influence of damping, stiffness, and moment of inertia on transmission systems. The analysis results provide references for the structural design, control strategy optimization, and failure diagnostics of this gearbox type.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 799
Author(s):  
Xiangli Pei ◽  
Ying Tian ◽  
Minglu Zhang ◽  
Ruizhuo Shi

It is challenging to accurately judge the actual end position of the manipulator—regarded as a rigid body—due to the influence of micro-deformation. Its precise and efficient control is a crucial problem. To solve the problem, the Hamilton principle was used to establish the partial differential equation (PDE) dynamic model of the manipulator system based on the infinite dimension of the working environment interference and the manipulator space. Hence, it resolves the common overflow instability problem in the micro-deformable manipulator system modeling. Furthermore, an infinite-dimensional radial basis function neural network compensator suitable for the dynamic model was proposed to compensate for boundary and uncertain external interference. Based on this compensation method, a distributed boundary proportional differential control method was designed to improve control accuracy and speed. The effectiveness of the proposed model and method was verified by theoretical analysis, numerical simulation, and experimental verification. The results show that the proposed method can effectively improve the response speed while ensuring accuracy.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Wei Jiang ◽  
Yating Shi ◽  
Dehua Zou ◽  
Hongwei Zhang ◽  
Hong Jun Li

Purpose The purpose of this paper is to achieve the optimal system design of a four-wheel mobile robot on transmission line maintenance, as the authors know transmission line mobile robot is a kind of special robot which runs on high-voltage cable to replace or assist manual power maintenance operation. In the process of live working, the manipulator, working end effector and the working environment are located in the narrow space and with heterogeneous shapes, the robot collision-free obstacle avoidance movement is the premise to complete the operation task. In the simultaneous operation, the mechanical properties between the manipulator effector and the operation object are the key to improve the operation reliability. These put forward higher requirements for the mechanical configuration and dynamic characteristics of the robot, and this is the purpose of the manuscript. Design/methodology/approach Based on the above, aiming at the task of tightening the tension clamp for the four-split transmission lines, the paper proposed a four-wheel mobile robot mechanism configuration and its terminal tool which can adapt to the walking and operation on multi-split transmission lines. In the study, the dynamic models of the rigid robot and flexible transmission line are established, respectively, and the dynamic model of rigid-flexible coupling system is established on this basis, the working space and dynamic characteristics of the robot have been simulated in ADAMS and MATLAB. Findings The research results show that the mechanical configuration of this robot can complete the tightening operation of the four-split tension clamp bolts and the motion of robot each joint meets the requirements of driving torque in the operation process, which avoids the operation failure of the robot system caused by the insufficient or excessive driving force of the robot joint torque. Originality/value Finally, the engineering practicability of the mechanical configuration and dynamic model proposed in the paper has been verified by the physical prototype. The originality value of the research is that it has double important theoretical significance and practical application value for the optimization of mechanical structure parameters and electrical control parameters of transmission line mobile robots.


2008 ◽  
Vol 381-382 ◽  
pp. 439-442
Author(s):  
Qi Wang ◽  
Zhi Gang Feng ◽  
K. Shida

Least squares support vector machine (LS-SVM) combined with niche genetic algorithm (NGA) are proposed for nonlinear sensor dynamic modeling. Compared with neural networks, the LS-SVM can overcome the shortcomings of local minima and over fitting, and has higher generalization performance. The sharing function based niche genetic algorithm is used to select the LS-SVM parameters automatically. The effectiveness and reliability of this method are demonstrated in two examples. The results show that this approach can escape from the blindness of man-made choice of LS-SVM parameters. It is still effective even if the sensor dynamic model is highly nonlinear.


Author(s):  
Timothy L. Krantz

Abstract Two versions of the planetary reduction stages from U.S. Army OH-58 helicopter main rotor transmissions were tested at the NASA Lewis Research Center. One sequential and one nonsequential planetary were tested. Sun gear and ring gear teeth strains were measured, and stresses were calculated from the strains. The alternating stress at the fillet of both the loaded and unloaded sides of the teeth and at the root of the sun gear teeth are reported. Typical stress variations as the gear tooth moves through the mesh are illustrated. At the tooth root location of the thin-rimmed sun gear, a significant stress was produced by a phenomenon other than the passing of a planet gear. The load variation among the planets was studied. Each planet produced its own distinctive load distribution on the ring and sun gears. The load variation was less for a three-planet, nonsequential design as compared to that of a four-planet, sequential design. The results reported enhance the data base for gear stress levels and provide data for the validation of analytical methods.


2011 ◽  
Vol 199-200 ◽  
pp. 19-24
Author(s):  
Jin Fu Zhang

In order to investigate dynamic performance of flexible multi-link manipulators more exactly, establishing the dynamic model with accounting for link foreshortening and link material damping is needed. In this paper, a new dynamic model for planar flexible multi-link manipulators is established by using Lagrange approach. Both link foreshortening and link material damping are accounted for in this model. As a case simulation, this model is applied to a planar flexible two-link manipulator with a tip mass, and the motion responses of the manipulator are obtained using Gear method.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Yufei Liu ◽  
Wei Li ◽  
Xuefeng Yang ◽  
Mengbao Fan ◽  
Yuqiao Wang ◽  
...  

Flexible manipulator generally can be modeled as a coupling system with a flexible beam and a rigid moving base. This paper investigates the vibration responses and power flow of a flexible manipulator with a moving base (FMMB). Considering the motion characteristics of the rigid base, the moving base is modeled to have a motion with disturbances, and the dynamic model of the FMMB is established. With the dynamic model, vibration responses of the FMMB for the rigid base having disturbance velocities and accelerations are specifically presented. Subsequently, to investigate the effect of the disturbances on the vibration energy distributions of the FMMB, power flow of the FMMB is exhibited. To verify the dynamic model, an ADAMS physical model of the FMMB is constructed. It reveals that the motion characteristics of the rigid base have a noticeable effect on the vibration responses and power flow of the FMMB and should be considered. The results are significant and contribute to the vibration control of flexible manipulators.


Sign in / Sign up

Export Citation Format

Share Document